

HPC User Environment, Job Management with PBS/Loadleveler

Alexander B. Pacheco

User Services Consultant LSU HPC & LONI sys-help@loni.org

HPC Training Fall 2012 Louisiana State University Baton Rouge September 12, 2012

Outline

- Hardware Overview
- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Outline

- 2 User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Two major architectures.

Linux Clusters

- Vendor: Dell
- OS: Red Hat
- CPU: Intel Xeon

AIX Clusters

- Vendor: IBM
- OS: AIX
- CPU: Power 7

Linux Clusters

	Name	Peak TeraFLOPS/s	Location	Status	Login
LONI	QueenBee	50.7	ISB	Production	LONI
	Eric	4.7	LSU	Production	LONI
	Louie	4.7	Tulane	Production	LONI
	Oliver	4.7	ULL Production		LONI
	Painter	4.7	LaTech	Production	LONI
	Poseidon	4.7	UNO	Production	LONI
	Satellite	4.7	Southern	Unknown	LONI
LSU HPC	Tezpur	15.3	LSU	Production	HPC
	Philip	3.5	LSU	Production	HPC
	SuperMike	146 (CPU) 66 (GPU)	LSU	Coming Soon	HPC

AIX Clusters

	Name	Peak TF/s	Location	Status	Login
LSU HPC	Pandora	6.8	LSU	Production	HPC

Account Management

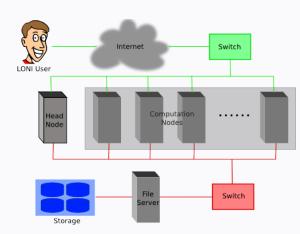
LONI account

https://allocations.loni.org

LSU HPC account

https://accounts.hpc.lsu.edu

- Newest cluster in production at LSU HPC is Pandora.
- Newest cluster at LSU HPC is SuperMike, estimated to be online sometime in Fall 2012.
- The default Login shell is bash
- Supported Shells: bash, tcsh, ksh, csh & sh
- Change Login Shell at the profile page



- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
 - ♦ Head node
 - Compute node

Cluster Hardware

- Queen Bee
 - ♦ 668 nodes: 8 Intel Xeon cores @ 2.33 GHz
 - 8 GB RAM
 - 192 TB storage
- Other LONI clusters
 - 128 nodes: 4 Intel Xeons cores @ 2.33 GHz
 - 4 GB RAM
 - 9 TB storage
- Tezpur
 - ♦ 360 nodes, 4 Intel Xeon cores @ 2.33 GHz
 - 4 GB RAM
 - 32 TB storage
- Philip
 - ♦ 37 nodes, 8 Intel Xeon cores @ 2.93 GHz
 - 24/48/96 GB RAM
 - Shares storage with Tezpur
- Pandora
 - ♦ 8 Power7 nodes, 8 IBM Power7 processors @ 3.33 GHz
 - 128 GB RAM
 - 19 TB storage

GPU nodes on Philip

- 2 Philip nodes with 3 GPU's each.
 - Intel Xeon X5650
 - 2.66GHz Dual Hexa-core with hyperthreading: 12 cores, 24 threads
 - ♦ Memory : 48GB
 - ◆ L3 Cache: 12MB
 - Tesla M2070
 - ♦ 448 CUDA cores (14 Multiprocessor × 32 CUDA Cores/MP)
 - GPU Clock Speed: 1.15GHz
 - ♦ Total Memory: 5.25GB
- Compilers: CUDA 4.0, PGI Accelerator
- Infiniband Interconnect between the two nodes.

SuperMike

- 146 CPU TFlops and 66 double-precision GPU TFlops,
- 382 standard nodes, dual Intel Sandy Bridge CPUs with 32GB RAM (16 cores per node),
- 50 GPU nodes, dual Intel Sandy Bridge CPUs with 64GB RAM and dual NVIDIA Tesla M2090 6GB GPUs,
- 8 big memory nodes with 256GB RAM, capable of aggregation into a single virtual symmetric processing (vSMP) node using ScaleMP,
- Mellanox Infiniband QDR network of 2:1 over-subscription.

Why is Cluster Hardware important?

 There are numerous different architectures in the HPC world

I 5II

- Choose the software to install or use depending on cluster architecture.
 - Linux: EM64T, AMD64, X86 64
 - AIX: Power7

Software Downloads

Download NAMD:

NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance : visualization package VMD. Visit the NAMD website for complete information and document

Selecting an archive below will lead to a user registration and login page. Your download will (

Version Nightly Build (2011-09-07) Platforms:

- Linux-x86 64 (64-bit Intel/AMD with ethernet)
- Linux-x86_64-CUDA (NVIDIA CUDA acceleration)
- Source Code

Version 2.8 (2011-05-31) Platforms:

AIX-POWER-lapi (IBM POWER clusters)

AIX-POWER-multicore (IBM POWER Single node)

- Linux-x86 (32-bit Intel/AMD with ethernet)
- . Linux-x86-TCP (TCP may be better on gigabit)
- Linux-x86 64-multicore (64-bit Intel/AMD single node) Linux-x86 64 (64-bit Intel/AMD with ethernet)
- Linux-x86_64-TCP (TCP may be better on gigabit)
- Linux-x86_64-ibverbs (InfiniBand via OpenFabrics OFED, no MPI needed) Linux-x86_64-ibverbs-smp (infiniband plus snared memory, no MPI needed)
- Linux-v86_64-CLID4_(NIVIDIA_CLID4_acceleration) Linux-x86 64-ibverbs-CUDA (NVIDIA CUDA with InfiniBand)
- MacOSX-x86 (Mac OS X for Intel processors, fails on 10.7 "Lion")
- . MacOSX-x86 64 (Mac OS X for 64-bit Intel processors)
- MacOSX-PPC (Mac OS X for PowerPC)
- Solaris-x86 64
- Win32 (Windows XP, etc.)
- Win64-MPI (Windows HPC Server)

Source Code

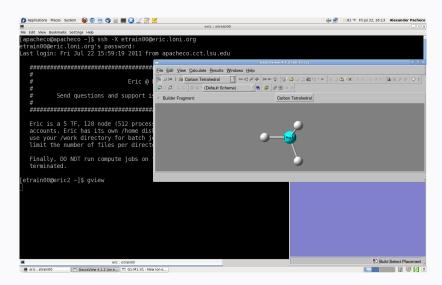
- The amount of installed memory less the amount that is used by the operating system and other utilities
- Max amount per node
 - ♦ Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
 - ♦ Tezpur:~3 GB
 - ♦ Philip:~22 GB for regular nodes, ~ 45 or 92 GB for high memory nodes.
 - ♦ Pandora:~125 GB
 - ★ Rule of Thumb: Leave about 1-2 GB for the OS to run

Outline

- User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

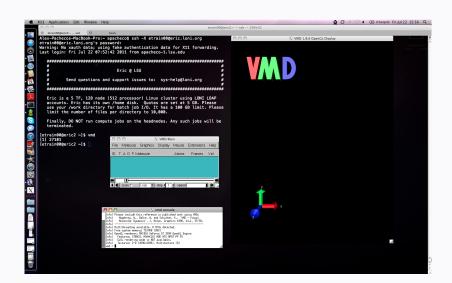
Accessing LONI & LSU HPC clusters

- LONI Host name: <cluster name>.loni.org
 - ★ Eric: eric.loni.org
- LSU HPC Host name: <cluster name>.hpc.lsu.edu
 - ★ Tezpur: tezpur.hpc.lsu.edu
- Use ssh to connect
 - *nix and Mac: ssh <host name>
 - ★ Windows: use Putty, Secure Shell Client or Bitvise Tunnelier
- The default Login shell is bash
- Supported shells: bash, tcsh, ksh, csh & sh
- Change the login shell at the profile page
 - ♦ LONI: https://allocations.loni.org
 - ♦ LSU HPC: https://accounts.hpc.lsu.edu
- Reset your password
 - ♦ LONI: https://allocations.loni.org/user_reset.php
 - ♦ LSU HPC: https://accounts.hpc.lsu.edu/user_reset.php



Connecting to Eric from a Linux box

HPC User Environment, Job Management with PBS/Loadleveler

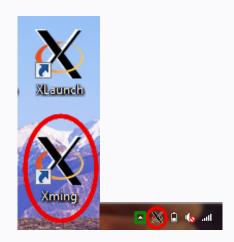


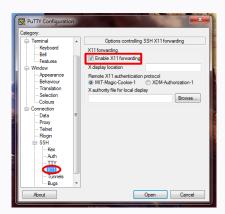
15 / 62

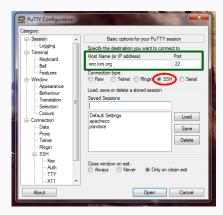
Connecting to Eric from a Mac box

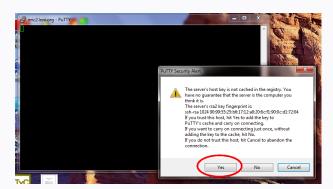
HPC User Environment, Job Management with PBS/Loadleveler

Connecting to Eric from a Windows box


- Download and Install
 - X-Server: X-ming http://www.straightrunning.com/XmingNotes/
 - SSH Client: Putty
 http://www.chiark.greenend.org.uk/~sgtatham/putty/
 - SSH+SFTP/SCP Client: Bitvise Tunnelier http://www.bitvise.com/tunnelier


HPC User Environment, Job Management with PBS/Loadleveler

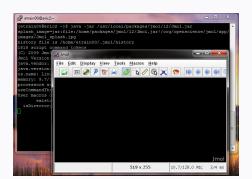




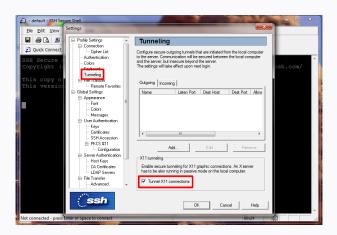

```
_ D X
eric2.loni.org - PuTTY
login as: etrain00
Access denied
etrain00@eric.loni.org's password:
```



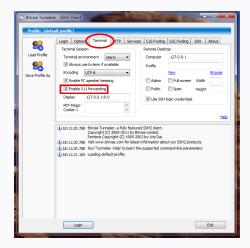
```
₽ etrain00@eric2:~
login as: etrain00
Access denied
etrain00@eric.loni.org's password:
Last login: Fri Jul 22 16:43:18 2011 from apacheco.cct.lsu.edu
                            Eric @ LSU
         Send questions and support issues to: sys-help@loni.org
  Eric is a 5 TF, 128 node (512 processor) Linux cluster using LONI LDAP
  accounts. Eric has its own /home disk. Quotas are set at 5 GB. Please
  use your /work directory for batch job I/O. It has a 100 GB limit. Please
  limit the number of files per directory to 10,000.
  Finally, DO NOT run compute jobs on the headnodes. Any such jobs will be
[etrain00@eric2 ~]$
```


HPC User Environment, Job Management with PBS/Loadleveler

Putty with X11



Configure Tunnelier/SSH Client to Tunnel X11 Connections



Configure Tunnelier/SSH Client to Tunnel X11 Connections

	Distributed File System	Throughput	File life time	Best used for
Home	Yes	Low	Unlimited	Code in develop- ment, compiled exe- cutable
Work	Yes	High	30 days	Job input/output
Local Scratch	No		Job Duration	Temporary files

Tips

- Never write job output to your home directory
- Do not write temporary files to /tmp, use local scratch or work space
- Work space is not for long term storage. Files are purged peridocally
- ♦ Use rmpurge to delete large amount of files.

September 12, 2012

CENTER FOR COMPUTAT

Cluster	Home		Work		Scratch	
	Access Point	Quota	Access Point	Quota	Access Point	
LONI Linux	/home/\$USER	5GB	/scratch/\$USER	100GB	/var/scratch	
HPC Linux	/home/\$USER	5GB	/work/\$USER	NA	/var/scratch	
HPC AIX	/home/\$USER	5GB	/work/\$USER	50GB	/scratch/local	

- No quota is enforced on the work space of QueenBee
- Work directory is created within an hour of first login
- Check current disk usage
- ♦ Linux: showquota
- ♦ AIX: quota

Exercise 1

- Log in to any cluster
- Check your disk quota
 - Linux: showquota
 - AIX: quota
- Copy the traininglab directory

cp -r /home/apacheco/traininglab .

- If you are not familiar with working on a Linux/Unix system
 - MPC Training Next Week (Sep 19, 2012) Introduction to Linux.
 - PPC Training Week after next (Sep 26, 2012) Bash Shell Scripting.
 - S Loni Moodle course @ https://docs.loni.org/moodle: HPC104 or HPC105.

Managing User Environment

- Environment variables
 - PATH: where to look for executables
 - ♦ LD_LIBRARY_PATH: where to look for shared libraries
 - Other custom environment variables needed by various software
- SOFTENV is a software that is used to set up these environment variables on all the clusters
 - More convenient than setting numerous environment variables in .bashrc or .cshrc

Command softenv lists all packages that are managed by SOFTENV

```
[apacheco@eric2 ~]$ softenv
SoftEnv version 1.6.2
These are the macros available:
   @default
These are the keywords explicitly available:
    +ImageMagick-6.4.6.9-intel-11.1
                                   @types: Applications Visualization @name:
    +NAMD-2.6-intel-11.1-mvapich-1.1
                                   @types: Applications @name: NAMD @version:
    +NAMD-2.7b2-intel-11.1-mvapich-1.1
                                   @types: Applications @name: NAMD @version:
```


Searching for a Specific Package

Use -k option with softenv

```
[apacheco@eric2 ~]$ softenv -k gaussian
SoftEnv version 1 6 2
Search Regexp: gaussian
These are the macros available:
These are the keywords explicitly available:
    +gaussian-03
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 03 @build: @internal:
    +gaussian-09
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 09 @build: @internal:
    +gaussview-4.1.2
                                   @types: Applications Chemistry @name:
                                     GaussView @version: 4.1.2 @build: - @about:
These are the keywords that are part of the software tree,
however, it is not suggested that you use these:
```


Setting up Environment via Softenv: One Time Change

- Setting up environment variables to use a certain package in the current session only.
 - Remove a package: soft add <key>
 - Add a package: soft add <key>

```
[apacheco@eric2 ~]$ which q09
/usr/local/packages/gaussian09/g09/g09
[apacheco@eric2 ~]$ soft delete +gaussian-09
[apacheco@eric2 ~]$ which q09
/usr/bin/which: no g09 in (/home/apacheco/bin:...
[apacheco@eric2 ~]$ soft add +gaussian-03
[apacheco@eric2 ~]$ which q03
/usr/local/packages/gaussian03/g03/g03
```


- Setting up the environment variables to use a certain software package(s).
 - ♦ First add the key to \$HOME/.soft.
 - ♦ Execute resoft at the command line.

```
[apacheco@eric2 ~]$ cat .soft
# This is the .soft file.
+mvapich-1.1-intel-11.1
+intel-fc-11.1
+intel-cc-11.1
+espresso-4.3.1-intel-11.1-mvapich-1.1
+gaussian-09
+1mto-intel-11.1
+nciplot-intel-11.1
+gaussview-4.1.2
+jmol-12
+vmd-1.8.6
+xcrysden-1.5.24-gcc-4.3.2
+tcl-8.5.8-intel-11.1
+gamess-12Jan2009R1-intel-11.1
+nwchem-5.1.1-intel-11.1-mvapich-1.1
+cpmd-3.11.1-intel-11.1-mvapich-1.1
@default
[apacheco@eric2 ~]$ resoft
```


soft-dbq shows which variables are set by a SOFTENV key

```
[apacheco@eric2 ~] $ soft-dbg +espresso-4.3.1-intel-11.1-mvapich-1.1
This is all the information associated with
the key or macro +espresso-4.3.1-intel-11.1-mvapich-1.1.
Name: +espresso-4.3.1-intel-11.1-myapich-1.1
Description: @types: Applications @name: Quantum Espresso @version: 4.3.1 @build: ...
Flags: none
Groups: none
Exists on: Linux
On the Linux architecture,
the following will be done to the environment:
  The following environment changes will be made:
    ESPRESSO PSEUDO = /usr/local/packages/espresso/4.3.1/intel-11.1-mvapich-1.1/pseudo
    ESPRESSO_ROOT = /usr/local/packages/espresso/4.3.1/intel-11.1-mvapich-1.1
    ESPRESSO TMPDIR = /work/${USER}
    PATH = ${PATH}:/usr/local/packages/espresso/4.3.1/intel-11.1-mvapich-1.1/bin
```


Exercise 2: Use Softenv

- Find the key for VISIT (a visualization package).
- Check what variables are set through the key.
- Set up your environment to use VISIT.
- Check if the variables are correctly set by using which visit.

Exercise 2: Use Softenv

• Find the key for VISIT (a visualization package).

softenv -k visit

Check what variables are set through the key.

soft-dbq +visit

Set up your environment to use VISIT.

soft add +visit

Check if the variables are correctly set by using which visit.

/usr/local/packages/visit/bin/visit

Language		Linux Cluste	AIX Clusters		
Language	Intel	ntel PGI GNU		XL	
Fortran	ifort	pgf77,pgf90	gfortran	xlf,xlf90	
С	icc	pgcc	gcc	xlc	
C++	icpc	pgCC	g++	xIC	

Usage: <compiler> <options> <your code>

♦ Example: icc -O3 -o myexec mycode.c

Some compilers options are architecture specific

Linux: EM64T, AMD64 or X86_64

AIX: power5,power7 or powerpc

Language	Linux Cluster	AIX Clusters
Fortran	mpif77,mpif90	mpxlf,mpxlf90
С	mpicc	mpcc
C++	mpiCC	mpCC

- Usage: <compiler> <options> <your_code>
 - ♦ Example: mpif90 -O2 -o myexec mycode.f90
- On Linux clusters
 - Only one compiler for each language
 - ♦ There is no intel_mpicc or pg_mpicc
- There are many different versions of MPI compilers on Linux clusters
 - Each of them is built around a specific compiler
 - Intel, PGI or GNU
- It is extremely important to compile and run you code with the same version!!!

September 12, 2012

CENTER FOR COMPUTATION OF THE CLINIC O

Compilers for MPI programs II

- Use the default version if possible
- These MPI compilers are actually wrappers
 - ♦ They still use the compilers we've seen on the previous slide
 - ★ Intel, PGI or GNU
 - They take care of everything we need to build MPI codes
 - ★ Head files, libraries etc.
 - ♦ What they actually do can be reveal by the -show option

33 / 62

Application Packages

- Installed under /usr/local/packages
- Most of them managed by SOFTENV
 - Numerical and utility libraries
 - FFTW, HDF5, NetCDF, PetSc, Intel MKL
 - Computational Chemistry
 - Amber, CPMD, Gaussian, GAMESS, Gromacs, LAMMPS, NAMD, NWCHFM
 - Visualization
 - GaussView, Vislt, VMD
 - Profiling/debugging tools
 - DDT, Tau, TotalView
 - **•** ...
- User Requested Packages
 - We install user requested packages either in user's home directory or system wide depending on usage

Exercise 3: Compiling a code

- Serial Code
 - On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
 - Compile hello.f90 with a compiler of your choice
 - Run the executable from the command line
- Parallel Code
 - On Linux cluster, find the appropriate key for mpi implementation of the above compiler
 - Compile hello_mpi.f90
 - Do Not run the parallel code, we'll use a script to submit to a job manager

Exercise 3: Compiling a code

- Serial Code
 - On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
 - Compile hello.f90 with a compiler of your choice ifort -o hello hello.f90 x1f90 -o hello hello.f90
 - Run the executable from the command line ./hello
- Parallel Code
 - On Linux cluster, find the appropriate key for mpi implementation of the above compiler
 - Compile hello_mpi.f90 mpif90 -o hellompi hello_mpi.f90
 - Do Not run the parallel code, we'll use a script to submit to a job manager

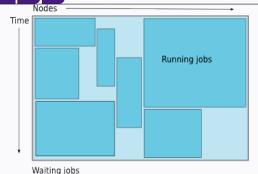
Outline

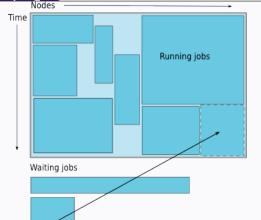
- Hardware Overview
- 2 User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - QueuesJoh Manager Common
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

The Cluster Environment

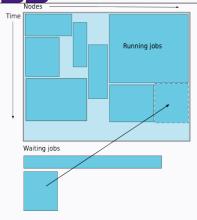
- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
 - Head node
 - Multiple Compute nodes
- Multi User
 Environment
- Each user may have multiple jobs running simultaneously.

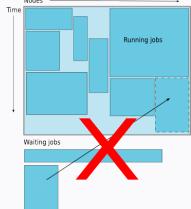
Batch Queuing System


- A software that manages resources (CPU time, memory, etc) and schedules job execution
 - ♦ Linux Clusters: Portable Batch System (PBS)
 - ♦ AIX Clusters: Loadleveler
- A job can be considered as a user's request to use a certain amount of resources for a certain amount of time
- The batch queuing system determines
 - The order jobs are executed
 - ② On which node(s) jobs are executed


A Simplified View of Job Scheduling

- Map jobs onto the node-time space
 - Assuming CPU time is the only resource
- Need to find a balance between
 - Honoring the order in which jobs are received
 - Maximizing resource utilization




- A strategy to improve utilization
 - Allow a job to jump ahead of others when there are enough idle nodes
 - Must not affect the estimated start time of the job with the highest priority
- Enabled on all LONI and LSU **HPC** clusters

How much time Should I request?

- Ask for an amount of time that is
 - Long enough for your job to complete
 - As short as possible to increase the chance of backfilling

Job Queues

- There are more than one job queue
- Each job queue differs in
 - Number of available nodes
 - Maximum run time
 - Maximum running jobs per user
- The main purpose is to maximize utilization

QueenBee

LSU

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use
workq	3 days	530	Ω	128	Unpreemptable
checkpt	5 days	668	0	256	preemptable

Other Clusters

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes Use per job	
single	14 days	16	64	1	Single processor jobs
workq	3 days	96	Ω	40	Unpreemptable
checkpt	5 days	128	0	64	preemptable

HPC User Environment, Job Management with PBS/Loadleveler

Tezpur

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use
single		16	64	1	Single processor jobs
workq	3 days	180	8	90	Unpreemptable
checkpt		344		180	preemptable

Philip

Queue	Max Run- time	Total number of nodes	Max run- ning jobs per user	Max nodes per job	Use
single		24		1	Single processor jobs
workq	3 days	28			Unpreemptable
checkpt	Juays	28	12	5	preemptable
bigmem	5				preemptable
gpu	2 days	2		2	preemptable

HPC User Environment, Job Management with PBS/Loadleveler

Pandora

Queue	Max Run- time	Total number of pro- cessors	Max run- ning jobs per user	Max pro- cessors per job	Use
interactive	30mins	8		8	Interactive Jobs
workq	3 days	224	6	128	Standard Queue
single	7 days	64		32	Single Node Jobs

Basic Job Manager Commands

- Queue querying
 - Check how busy the cluster is
- Job submission
- Job monitoring
 - Check job status (estimated start time, remaining run time, etc)
- Job manipulation
 - Cancel/Hold jobs

- qfree: show number of free,busy and queued nodes
- qfreeloni: run qfree on all LONI Linux clusters

```
[apacheco@eric2 ~]$ qfree
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61\%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, gueued: 366
[apacheco@eric2 ~]$ gfreeloni
----- ab -
PBS total nodes: 668, free: 3, busy: 647, down: 18, use: 96\%
PBS workg nodes: 530, free: 0, busy: 278, gueued: 367
PBS checkpt nodes: 668, free: 1, busy: 369, queued: 770
----- eric -
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61\%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, queued: 366
----- louie
PBS total nodes: 128, free: 44, busy: 83 *2, down: 1, use: 64\%
PBS workq nodes: 104, free: 40, busy: 0, queued: 0
PBS checkpt nodes: 128, free: 44, busy: 82, queued: 50
PBS single nodes: 32, free: 7 *26, busy: 2, queued: 0
----- oliver -
PBS total nodes: 128, free: 74, busy: 52, down: 2, use: 40\%
PBS workg nodes: 62, free: 8, busy: 11, queued: 0
```


Queue Querying: AIX Clusters

• Command: 11class

pandoral:~ apach	eco\$ llclass				
Name	MaxJobCPU	MaxProcCPU	Free	Max	Description
	d+hh:mm:ss	d+hh:mm:ss	Slots	Slots	
interactive	unlimited	unlimited	8	8	Queue for interactive jobs; maximum ru
workq	unlimited	unlimited	28	224	Standard queue for job submissions; ma
cheme	unlimited	unlimited	24	96	Queue for Chemical Engineering; maximu
single	unlimited	unlimited	24	64	Queue for single-node job submissions;
"Free Slots" val	ues of the classes	"workq", "	cheme"	are c	onstrained by the MAX_STARTERS limit(s)

Interactive Jobs

- Set up an interactive environment on compute nodes for users
 - Advantage: can run programs interactively
 - Disadvantage: must be present when job starts
- Purpose: testing and debugging code. Do not run jobs on head node!!!

```
qsub -I -V -l walltime=<hh:mm:ss>,nodes=<# of
nodes>:ppn=cpu -A <your allocation> -q <queue name>
```

- On QueenBee, cpu=8
- Other LONI Clusters: cpu=4 (parallel jobs)
- To enable X-forwarding: add -X

Batch Jobs

- Executed using a batch script without user intervention
 - Advantage: system takes care of running the job
 - Disadvantage: can change sequence of commands after submission
- Useful for Production runs

```
qsub <job script>
llsubmit <job script>
```


PBS Job Script: Parallel Jobs


```
#!/bin/bash
#PBS -1 nodes=4:ppn=4
#PBS -1 walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q checkpt
#PBS -A <loni allocation>
#PBS -m e
#PBS -M <email address>
<shell commands>
mpirun -machinefile $PBS_NODEFILE \
 -np 16 <path_to_executable> <options>
<shell commands>
```

```
Shell being used
# of nodes & processors
Maximum walltime
Job name
standard output
standard error
Queue name
Allocation name
Send mail when job ends
to this address
```

shell commands run parallel job

shell commands

LSIJ

PBS Job Script: Serial Jobs


```
#!/bin/bash
#PBS -1 nodes=1:ppn=1
#PBS -1 walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q single
#PBS -A <loni_allocation>
#PBS -m e
#PBS -M <email address>
<shell commands>
<path_to_executable> <options>
<shell commands>
```

```
Shell being used
# of nodes & processors
Maximum walltime
Job name
standard output
standard error
Use single queue
Allocation name
Send mail when job ends
to this address
```

shell commands run parallel job shell commands

LSU

Loadleveler Job Script I


```
#!/bin/sh
                                                              Shell being used
#@ iob type = parallel
                                                              Job Type
#@ output = $(jobid).out
                                                              standard output
#@ error = $(jobid).err
                                                              standard error
#@ notification = error
                                                              notify on error
#@ notify_user = youremail@domain
                                                              to mail address
#@ class = checkpt
                                                              job queue
#@ wall clock limit = 24:00:00
                                                              max walltime
#@ node usage = shared
                                                              node usage
\#@ node = 2
                                                              # of nodes
#@ total tasks = 32
                                                              total processors
#@ resources = ConsumableMem(512 mb) ConsumableCPUS(1)
                                                              resources requested per processor
#@ network.MPI LAPI = sn all, shared, US.HIGH
                                                              network directive
#@ requirements = (Arch == "POWER7")
                                                              job requirements
#@ environment = COPY ALL
                                                              environment
#@ aueue
<shell commands>
                                                              shell commands
poe <path_to_executable> <options>
                                                              run parallel job
<shell commands>
                                                              shell commands
```


LSU

Loadleveler Job Script II


```
#!/bin/sh
                                                             Shell being used
#@ job type = serial
                                                             Job Type
#@ output = $(jobid).out
                                                             standard output
#@ error = $(jobid).err
                                                             standard error
#@ notification = error
                                                             notify on error
#@ notify_user = youremail@domain
                                                             to mail address
#@ class = checkpt
                                                             job queue
#@ wall clock limit = 24:00:00
                                                             max walltime
#@ node usage = shared
                                                             node usage
#@ node = 1
                                                             # of nodes
#@ total tasks = 1
                                                             total processors
#@ resources = ConsumableMem(512 mb) ConsumableCPUS(1)
                                                             resources requested per processor
#@ requirements = (Arch == "POWER7")
                                                             iob requirements
                                                             environment
#@ environment = COPY ALL
#@ queue
<shell commands>
                                                             shell commands
<path to executable> <options>
                                                             run parallel job
<shell commands>
                                                             shell commands
```

LSU

On Pandora:

- #@ resources = ConsumableMem(512 mb) ConsumableCPUS(1) is required
- #@ requirements = (Arch == "POWER7")
- #@ network.MPI_LAPI = sn_all, shared, US, HIGH

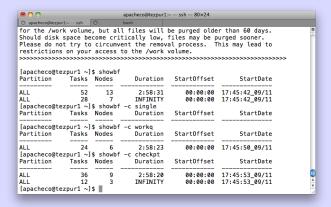
Exercise 4: Job Submission

- Write a job submission script to execute the hello_mpi program.
- Submit the script to the job manager.

Job Monitoring I

Linux Clusters

- showstart <job id>
 - Check estimated time when job can start
- When can the estimated time change
 - Higher priority job gets submitted
 - Running jobs terminate earlier than time requested
 - System has trouble starting your job
- qstat <options> <job id>
 - ♦ Show information on job status
 - ♦ All jobs displayed if < job id> is omitted
 - qstat -u <username>: Show jobs belonging to <username>
 - ♦ qstat -a <job id>: Display in an alternative format
- qshow <job id>
 - ♦ Show information of running job <job id>: node running on and CPU load



Job Monitoring II

• showbf -c <queue>

Job Monitoring

AIX Clusters

- llq <options> <job id>
 - ♦ All jobs are displayed if < job id> is omitted
 - ◆ Display detailed information: 11q -1 <job id>
 - ♦ Check estimated start time: llq -s <job id>
 - ♦ Show jobs from a specific user: llq -u <username>

pandoral:~ apacheco\$ 11q Id	Owner	Submitted	ST	PRI	Class	Running On
pandoral.12700.0 pandoral.12701.0 pandoral.12702.0 pandoral.12713.0 pandoral.12714.0 pandoral.12716.0 pandoral.12717.0	ghoshbd ghoshbd abhi300 ghoshbd hypoxia abhi300	9/9 13:5 9/9 14:0 9/9 14:0 9/10 17:1 9/11 01:2 9/11 09:1 9/11 09:5	2 R 1 R 2 R 1 R	50 50 50 50 50 50	single workq single single workq workq single	pandora002 pandora007 pandora001 pandora001 pandora004 pandora008 pandora002

7 job step(s) in queue, 0 waiting, 0 pending, 7 running, 0 held, 0 preempted

Job Monitoring

AIX Clusters

showllstatus.py: Show job status and node running on

pandoral:~ a	apacheco:	showllstat	us.py				
Node	Statu	s Load	Arch	Node	Stati	ıs Load	Arch
pandora001	Run	20.20	POWER7	pandora006	Busy	32.09	POWER7
pandora002	Run	20.39	POWER7	pandora007	Run	16.01	POWER7
pandora003	Busy	32.04	POWER7	pandora008	Busy	32.10	POWER7
pandora004	Busy	32.07	POWER7	pandora1	Idle	0.00	POWER7
pandora005	Busy	32.02	POWER7				
Step ID		Owner	Status	s Class	Hosts	Queue Date	Disp. Date
pandora1.12	717.0	abhi300	R	single	1	09/11 09:57	09/11 09:57
pandora1.12	716.0	hypoxia	R	workq	4	09/11 09:14	09/11 09:14
pandora1.12	714.0	ghoshbd	R	workq	1	09/11 01:24	09/11 01:24
pandora1.12	713.0	abhi300	R	single	1	09/10 17:12	09/10 17:12
pandora1.12	702.0	ghoshbd	R	single	1	09/09 14:04	09/09 14:04
pandora1.12701.0		ghoshbd	R	workq	1	09/09 14:02	09/09 14:02
pandoral.12	700.0	ghoshbd	R	single	1	09/09 13:59	09/09 13:59

Job Manipulation

Linux Clusters

• qdel <job id> Cancel a running or queued job

• qhold <job id> Put a queued job on hold

• grls <job id> Resume a held job

AIX Clusters

• llcancel <job id> Cancel a running or queued job

• llhold <job id> Put a queued job on hold

• llhold -r <job id> Resume a held job

Outline

- Hardware Overview
- 2 User Environment
 - Accessing LONI & LSU HPC clusters
 - File Systems
 - Software Management
- Job Management
 - Queues
 - Job Manager Commands
 - Job Types
 - Job Submission Scripts
 - Job Monitoring & Manipulation
- 4 HPC Help

Additional Help

- User's Guide
 - ♦ HPC: http://www.hpc.lsu.edu/help
 - ♦ LONI: https://docs.loni.org/wiki/Main_Page
- Contact us
 - Email ticket system: sys-help@loni.org
 - ♦ Telephone Help Desk: 225-578-0900
 - ♦ Walk-in consulting session at Middleton Library
 - ★ Tuesdays and Thursdays only
 - Instant Messenger (AIM, Yahoo Messenger, Google Talk)
 - ★ Add "Isuhpchelp"

