
Shell Scripting

Alexander B. Pacheco
LTS Research Computing

http://researchcomputing.lehigh.edu

Outline

1 Introduction
Types of Shell
Variables
File Permissions
Input and Output

2 Shell Scripting
Getting Started with Writing Simple Scripts
Arithmetic Operations
Flow Control
Arrays
Command Line Arguments
Functions

3 Unix Utilities
grep
sed

4 awk programming

5 Wrap Up

2 / 76

Introduction

Introduction

What is a SHELL

The command line interface is the primary interface to Linux/Unix operating systems.

Shells are how command-line interfaces are implemented in Linux/Unix.

Each shell has varying capabilities and features and the user should choose the shell
that best suits their needs.

The shell is simply an application running on top of the kernel and provides a powerful
interface to the system.

Other Software

Shell

Kernel
H

ar
dware

4 / 76

Types of Shell

sh : Bourne Shell

� Developed by Stephen Bourne at AT&T Bell Labs

csh : C Shell

� Developed by Bill Joy at University of California, Berkeley

ksh : Korn Shell

� Developed by David Korn at AT&T Bell Labs
� backward-compatible with the Bourne shell and includes many features of the C

shell

bash : Bourne Again Shell

� Developed by Brian Fox for the GNU Project as a free software replacement for
the Bourne shell (sh).

� Default Shell on Linux and Mac OSX
� The name is also descriptive of what it did, bashing together the features of sh,

csh and ksh

tcsh : TENEX C Shell

� Developed by Ken Greer at Carnegie Mellon University
� It is essentially the C shell with programmable command line completion,

command-line editing, and a few other features.

5 / 76

Shell Comparison

sh csh ksh bash tcsh
Programming Language 3 3 3 3 3

Shell Variables 3 3 3 3 3
Command alias 7 3 3 3 3

Command history 7 3 3 3 3
Filename completion 7 M M 3 3

Command line editing 7 7 M 3 3
Job control 7 3 3 3 3

3 : Yes

7 : No

M : Yes, not set by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

6 / 76

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Variables I

A variable is a named object that contains data used by one or more applications.

There are two types of variables, Environment and User Defined and can contain a
number, character or a string of characters.

Environment Variables provides a simple way to share configuration settings between
multiple applications and processes in Linux.

As in programming languages like C, C++ and Fortran, defining your own variables
makes the program or script extensible by you or a third party

Rules for Variable Names

1 Variable names must start with a letter or underscore
2 Number can be used anywhere else
3 DO NOT USE special characters such as @, #, %, $
4 Case sensitive
5 Examples

Allowed: VARIABLE, VAR1234able, var name, VAR
Not Allowed: 1VARIABLE, %NAME, $myvar, VAR@NAME

To reference a variable, environment or user defined, you need to prepend the variable
name with ”$” as in $VARIABLE, $PATH, etc.

7 / 76

Variables II

Its a good practice to protect your variable name within {. . . } such as ${PATH} when
referencing it. (We’ll see an example in a few slides)

Assigning value to a variable

Type sh,ksh,bash csh,tcsh
Shell name=value set name = value

Environment export name=value setenv name value

sh,ksh,bash THERE IS NO SPACE ON EITHER SIDE OF =

csh,tcsh space on either side of = is allowed for the set command

csh,tcsh There is no = in the setenv command

8 / 76

File Permissions I

In *NIX OS’s, you have three types of file permissions

1 read (r)
2 write (w)
3 execute (x)

for three types of users

1 user
2 group
3 world i.e. everyone else who has access to the system

drwxr-xr-x. 2 user user 4096 Jan 28 08:27 Public
-rw-rw-r- -. 1 user user 3047 Jan 28 09:34 README

The first character signifies the type of the file

d for directory

l for symbolic link

- for normal file

The next three characters of first triad signifies what the owner can do

The second triad signifies what group member can do

9 / 76

File Permissions II

The third triad signifies what everyone else can do

d rwx︸︷︷︸
u

g︷ ︸︸ ︷
r − x r − x︸ ︷︷ ︸

o

Read carries a weight of 4

Write carries a weight of 2

Execute carries a weight of 1

The weights are added to give a value of 7 (rwx), 6(rw), 5(rx) or 3(wx) permissions.

chmod is a *NIX command to change permissions on a file

To give user rwx, group rx and world x permission, the command is

chmod 751 filename

Instead of using numerical permissions you can also use symbolic mode

u/g/o or a user/group/world or all i.e. ugo

+/- Add/remove permission

r/w/x read/write/execute

10 / 76

File Permissions III

Give everyone execute permission:

chmod a+x hello.sh

chmod ugo+x hello.sh

Remove group and world read & write permission:

chmod go-rw hello.sh

Use the -R flag to change permissions recursively, all files and directories and their
contents.

chmod -R 755 ${HOME}/*
What is the permission on ${HOME}?

HPC Users
If you want to share your files with your colleagues

1 Make your home directory read accessible to the world

chmod 755 ${HOME}
do not use the recursive -R flag

2 Change to your home directory and give read access to the directory that you want to
share using the -R flag

11 / 76

Input/Output I

For reading input from screen/keyboard/prompt

bash read

tcsh $<

The read statement takes all characters typed until the Enter key is pressed and

stores them into a variable.

Syntax read <variable name>

Example read name Enter

Alex Pacheco

$< can accept only one argument. If you have multiple arguments, enclose the $<

within quotes e.g. "$<"

Syntax: set <variable> = $<

Example: set name = "$<" Enter

Alex Pacheco

In the above examples, the name that you enter in stored in the variable name.

12 / 76

Input/Output II

The command echo is used for displaying output to screen

Use the echo command to print the variable name to the screen

echo $name Enter

The echo statement can print multiple arguments.

By default, echo eliminates redundant whitespace (multiple spaces and tabs) and
replaces it with a single whitespace between arguments.

To include redundant whitespace, enclose the arguments within double quotes

echo Welcome to HPC Training (more than one space between HPC and
Training)

echo "Welcome to HPC Training"

read name or set name = "$<"

Alex Pacheco

echo $name

echo "$name"

13 / 76

Input/Output III

You can also use the printf command to display output

Syntax: printf <format> <arguments>

Example: printf "$name"

printf "%s\n" "$name"

Format Descriptors

%s print argument as a string
%d print argument as an integer
%f print argument as a floating point number
\n print new line

you can add a width for the argument between the % and {s,d,f} fields
%4s, %5d, %7.4f

The printf command is used in awk to print formatted data (more on this later)

14 / 76

I/O Redirection

There are three file descriptors for I/O streams

1 STDIN: Standard Input
2 STDOUT: Standard Output
3 STDERR: Standard Error

1 represents STDOUT and 2 represents STDERR

I/O redirection allows users to connect applications

< : connects a file to STDIN of an application
> : connects STDOUT of an application to a file

>> : connects STDOUT of an application by appending to a file
| : connects the STDOUT of an application to STDIN of another application.

Examples:

1 write STDOUT to file: ls -l > ls-l.out
2 write STDERR to file: ls -l 2> ls-l.err
3 write STDOUT to STDERR: ls -l 1>&2
4 write STDERR to STDOUT: ls -l 2>&1
5 send STDOUT as STDIN: ls -l | wc -l

15 / 76

Shell Scripting

What is a scripting language?

A scripting language or script language is a programming language that supports
the writing of scripts.

Scripting Languages provide a higher level of abstraction than standard
programming languages.

Compared to programming languages, scripting languages do not distinguish between
data types: integers, real values, strings, etc.

Scripting Languages tend to be good for automating the execution of other programs.

� analyzing data
� running daily backups

They are also good for writing a program that is going to be used only once and then
discarded.

A script is a program written for a software environment that automate the execution
of tasks which could alternatively be executed one-by-one by a human operator.

The majority of script programs are “quick and dirty”, where the main goal is to get
the program written quickly.

17 / 76

Writing your first script

Three things to do to write and execute a script

1 Write a script

A shell script is a file that contains ASCII text.
Create a file, hello.sh with the following lines

#!/bin/bash

My First Script

echo "Hello World!"

2 Set permissions

~/Tutorials/BASH/scripts> chmod 755 hello.sh

OR

~/Tutorials/BASH/scripts> chmod a+x hello.sh

3 Execute the script

~/Tutorials/BASH/scripts> ./hello.sh

Hello World!

4 If you do not set execute permission for the script, then

~/Tutorials/BASH/scripts> sh hello.sh

Hello World!

18 / 76

Description of the script

My First Script

#!/bin/bash

My First Script

echo "Hello World!"

The first line is called the ”ShaBang” line. It tells the OS which interpreter to use. In
the current example, bash

Other options are:

� sh : #!/bin/sh

� ksh : #!/bin/ksh

� csh : #!/bin/csh

� tcsh: #!/bin/tcsh

The second line is a comment. All comments begin with ”#”.

The third line tells the OS to print ”Hello World!” to the screen.

19 / 76

Special Characters

#: starts a comment.

$: indicates the name of a variable.

\: escape character to display next character literally.

{ }: used to enclose name of variable.

; Command separator [semicolon]. Permits putting two or more commands
on the same line.

;; Terminator in a case option [double semicolon].

. ”dot” command [period]. Equivalent to source. This is a bash builtin.

$? exit status variable.

$$ process ID variable.

[] test expression

[[]] test expression, more flexible than []

$[], (()) integer expansion

||, &&, ! Logical OR, AND and NOT

20 / 76

Quotation

Double Quotation " "

Enclosed string is expanded (”$”, ”/” and ”‘”)
Example: echo "$myvar" prints the value of myvar

Single Quotation ’ ’

Enclosed string is read literally
Example: echo ’$myvar’ prints $myvar

Back Quotation ‘ ‘

Used for command substitution
Enclosed string is executed as a command
Example: echo ‘pwd‘ prints the output of the pwd command i.e. print working
directory
In bash, you can also use $(· · ·) instead of ‘· · · ‘
e.g. $(pwd) and ‘pwd‘ are the same

21 / 76

Example

#!/bin/bash

HI=Hello

echo HI # displays HI

echo $HI # displays Hello

echo \$HI # displays $HI

echo "$HI" # displays Hello

echo ’$HI ’ # displays $HI

echo "$HIAlex" # displays nothing

echo "${HI}Alex" # displays HelloAlex

echo ‘pwd ‘ # displays working directory

echo $(pwd) # displays working directory

~/Tutorials/BASH/scripts/day1/examples> ./quotes.sh

HI

Hello

$HI

Hello

$HI

HelloAlex

/home/apacheco/Tutorials/BASH/scripts/day1/examples

/home/apacheco/Tutorials/BASH/scripts/day1/examples

~/Tutorials/BASH/scripts/day1/examples>

22 / 76

Arithmetic Operations I

You can carry out numeric operations on integer variables

Operation Operator
Addition +

Subtraction -
Multiplication *

Division /
Exponentiation ** (bash only)

Modulo %

Arithmetic operations in bash can be done within the $((· · ·)) or $[· · ·] commands

F Add two numbers: $((1+2))

F Multiply two numbers: $[$a*$b]

F You can also use the let command: let c=$a-$b

F or use the expr command: c=‘expr $a - $b‘

23 / 76

Arithmetic Operations II

In tcsh,

F Add two numbers: @ x = 1 + 2

F Divide two numbers: @ x = $a / $b

F You can also use the expr command: set c = ‘expr $a % $b‘

Note the use of space

bash space required around operator in the expr command

tcsh space required between @ and variable, around = and numeric operators.

You can also use C-style increment operators

bash let c+=1 or let c--

tcsh @ x -= 1 or @ x++

/=, *= and %= are also allowed.

bash

The above examples only work for integers.

What about floating point number?

24 / 76

Arithmetic Operations III

Using floating point in bash or tcsh scripts requires an external calculator like GNU
bc.

F Add two numbers:
echo "3.8 + 4.2" | bc

F Divide two numbers and print result with a precision of 5 digits:
echo "scale=5; 2/5" | bc

F Call bc directly:
bc <<< "scale=5; 2/5"

F Use bc -l to see result in floating point at max scale:
bc -l <<< "2/5"

You can also use awk for floating point arithmetic.

25 / 76

Flow Control

Shell Scripting Languages execute commands in sequence similar to programming
languages such as C, Fortran, etc.

Control constructs can change the sequential order of commands.

Control constructs available in bash and tcsh are

1 Conditionals: if
2 Loops: for, while, until
3 Switches: case, switch

26 / 76

if statement

An if/then construct tests whether the exit status of a list of commands is 0, and if
so, executes one or more commands.

bash

if [condition1]; then

some commands

elif [condition2]; then

some commands

else

some commands

fi

tcsh

if (condition1) then

some commands

else if (condition2) then

some commands

else

some commands

endif

Note the space between condition and ”[” ”]”

bash is very strict about spaces.

tcsh commands are not so strict about spaces.

tcsh uses the if-then-else if-else-endif similar to Fortran.

27 / 76

Comparison Operators

Integer Comparison
Operation bash tcsh
equal to if [1 -eq 2] if (1 == 2)

not equal to if [$a -ne $b] if ($a != $b)

greater than if [$a -gt $b] if ($a > $b)

greater than or equal to if [1 -ge $b] if (1 >= $b)

less than if [$a -lt 2] if ($a < 2)

less than or equal to if [$a -le $b] if ($a <= $b)

String Comparison
operation bash tcsh
equal to if [$a == $b] if ($a == $b)

not equal to if [$a != $b] if ($a != $b)

zero length or null if [-z $a] if ($%a == 0)

non zero length if [-n $a] if ($%a > 0)

28 / 76

File Test & Logical Operators

File Test Operators
Operation bash tcsh
file exists if [-e .bashrc] if (-e .tcshrc)

file is a regular file if [-f .bashrc]

file is a directory if [-d /home] if (-d /home)

file is not zero size if [-s .bashrc] if (! -z .tcshrc)

file has read permission if [-r .bashrc] if (-r .tcshrc)

file has write permission if [-w .bashrc] if (-w .tcshrc)

file has execute permission if [-x .bashrc] if (-x .tcshrc)

Logical Operators
Operation bash tcsh
Operation bash tcsh

NOT if [! -e .bashrc] if (! -z .tcshrc)

AND if [$a -eq 2] && [$x -gt $y] if ($a == 2 && $x <= $y)

OR if [[$a -eq 2 || $x -gt $y]] if ($a == 2 || $x <= $y)

29 / 76

Examples

Condition tests using the if/then may be nested

read a

if ["$a" -gt 0]; then

if ["$a" -lt 5]; then

echo "The value of \"a\" lies somewhere between 0

and 5"

fi

fi

set a = $<

if ($a > 0) then

if ($a < 5) then

echo "The value of $a lies somewhere between

0 and 5"

endif

endif

This is same as

read a

if [["$a" -gt 0 && "$a" -lt 5]]; then

echo "The value of $a lies somewhere between 0 and

5"

fi

OR

if ["$a" -gt 0] && ["$a" -lt 5]; then

echo "The value of $a lies somewhere between 0 and

5"

fi

set a = $<

if ("$a" > 0 && "$a" < 5) then

echo "The value of $a lies somewhere between 0

and 5"

endif

30 / 76

Loop Constructs

A loop is a block of code that iterates a list of commands as long as the loop control
condition is true.

Loop constructs available in

bash: for, while and until

tcsh: foreach and while

31 / 76

bash: for loops

The for loop is the basic looping construct in bash

for arg in list

do

some commands

done

the for and do lines can be written on the same line: for arg in list ; do

for loops can also use C style syntax

for ((EXP1; EXP2; EXP3)); do

some commands

done

for i in $(seq 1 10)

do

touch file${i}.dat

done

for i in $(seq 1 10); do

touch file${i}.dat

done

for ((i=1;i <=10;i++))

do

touch file${i}.dat

done

32 / 76

tcsh: foreach loop

The foreach loop is the basic looping construct in tcsh

foreach arg (list)

some commands

end

foreach i (‘seq 1 10‘)

touch file$i.dat

end

33 / 76

while Construct

The while construct tests for a condition at the top of a loop, and keeps looping as
long as that condition is true (returns a 0 exit status).

In contrast to a for loop, a while loop finds use in situations where the number of loop
repetitions is not known beforehand.

bash

while [condition]

do

some commands

done

tcsh

while (condition)

some commands

end

factorial.sh

#!/bin/bash

echo -n "Enter a number less than 10: "

read counter

factorial =1

while [$counter -gt 0]

do

factorial=$(($factorial * $counter))

counter=$(($counter - 1))

done

echo $factorial

factorial.csh

#!/bin/tcsh

echo -n "Enter a number less than 10: "

set counter = $<

set factorial = 1

while ($counter > 0)

@ factorial = $factorial * $counter

@ counter -= 1

end

echo $factorial

34 / 76

until Contruct (bash only)

The until construct tests for a condition at the top of a loop, and keeps looping as
long as that condition is false (opposite of while loop).

until [condition is true]

do

some commands

done

factorial2.sh

#!/bin/bash

echo -n "Enter a number less than 10: "

read counter

factorial =1

until [$counter -le 1]; do

factorial=$[$factorial * $counter]

if [$counter -eq 2]; then

break

else

let counter -=2

fi

done

echo $factorial

35 / 76

Nested Loops

for, while & until loops can nested. To exit from the loop use the break command

nestedloops.sh

#!/bin/bash

Example of Nested loops

echo "Nested for loops"

for a in $(seq 1 5) ; do

echo "Value of a in outer loop:" $a
for b in ‘seq 1 2 5‘ ; do

c=$(($a*$b))

if [$c -lt 10]; then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

fi
done

done
echo "========================"
echo
echo "Nested for and while loops"

for ((a=1;a<=5;a++)); do

echo "Value of a in outer loop:" $a
b=1

while [$b -le 5]; do

c=$(($a*$b))

if [$c -lt 5]; then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 5"
break

fi
let b+=2

done
done
echo "========================"

nestedloops.csh

#!/bin/tcsh

Example of Nested loops

echo "Nested for loops"

foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a

foreach b (‘seq 1 2 5‘)

@ c = $a * $b

if ($c < 10) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

endif
end

end
echo "========================"
echo
echo "Nested for and while loops"

foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a
set b = 1

while ($b <= 5)

@ c = $a * $b

if ($c < 5) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 5"
break

endif

@ b = $b + 2
end

end
echo "========================"

~/ Tutorials/BASH/scripts/day1/examples > ./
nestedloops.sh

Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

~/ Tutorials/BASH/scripts > ./day1/examples/
nestedloops.csh

Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

36 / 76

Switching or Branching Constructs I

The case and select constructs are technically not loops, since they do not iterate the

execution of a code block.

Like loops, however, they direct program flow according to conditions at the top or bottom

of the block.

case construct

case variable in

"condition1")

some command

;;

"condition2")

some other command

;;

esac

select construct

select variable [list]

do

command

break

done

37 / 76

Switching or Branching Constructs II

tcsh has the switch construct

switch construct

switch (arg list)

case "variable"

some command

breaksw

endsw

38 / 76

dooper.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"

operations=’add subtract multiply divide exponentiate
modulo all quit ’

select oper in $operations ; do

case $oper in

"add")

echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")

echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")

echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")

echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")

echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")

echo "$num1 + $num2 =" $[$num1 + $num2]

echo "$num1 - $num2 =" $[$num1 - $num2]

echo "$num1 * $num2 =" $[$num1 * $num2]

echo "$num1 ** $num2 =" $[$num1 ** $num2]

echo "$num1 / $num2 =" $[$num1 / $num2]

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

*)
exit
;;

esac
done

dooper.csh

#!/bin/tcsh

echo "Print two numbers one at a time"

set num1 = $<

set num2 = $<
echo "What operation do you want to do?"

echo "Enter +, -, x, /, % or all"

set oper = $<

switch ($oper)
case "x"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"
breaksw

case "all"

@ sum = $num1 + $num2

echo "$num1 + $num2 = $sum"

@ diff = $num1 - $num2

echo "$num1 - $num2 = $diff"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"

@ ratio = $num1 / $num2

echo "$num1 / $num2 = $ratio"

@ remain = $num1 % $num2

echo "$num1 % $num2 = $remain"
breaksw

case "*"

@ result = $num1 $oper $num2

echo "$num1 $oper $num2 = $result"
breaksw

endsw

39 / 76

~/Tutorials/BASH/scripts> ./day1/examples/dooper.sh

Print two numbers

1 4

What operation do you want to do?

1) add 3) multiply 5) exponentiate 7) all

2) subtract 4) divide 6) modulo 8) quit

#? 7

1 + 4 = 5

1 - 4 = -3

1 * 4 = 4

1 ** 4 = 1

1 / 4 = 0

1 % 4 = 1

#? 8

~/Tutorials/BASH/scripts> ./day1/examples/dooper.csh

Print two numbers one at a time

1

5

What operation do you want to do?

Enter +, -, x, /, % or all

all

1 + 5 = 6

1 - 5 = -4

1 * 5 = 5

1 / 5 = 0

1 % 5 = 1

40 / 76

dooper1.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"
echo "Options are add , subtract , multiply ,

exponentiate , divide , modulo and all"
read oper

case $oper in

"add")

echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")

echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")

echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")

echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")

echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")

echo "$num1 + $num2 =" $[$num1 + $num2]

echo "$num1 - $num2 =" $[$num1 - $num2]

echo "$num1 * $num2 =" $[$num1 * $num2]

echo "$num1 ** $num2 =" $[$num1 ** $num2]

echo "$num1 / $num2 =" $[$num1 / $num2]

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

*)
exit
;;

esac

~/Tutorials/BASH/scripts> ./day1/examples/dooper1.sh

Print two numbers

2 5

What operation do you want to do?

Options are add , subtract , multiply , exponentiate ,

divide , modulo and all

all

2 + 5 = 7

2 - 5 = -3

2 * 5 = 10

2 ** 5 = 32

2 / 5 = 0

2 % 5 = 2

41 / 76

Arrays I

bash and tcsh supports one-dimensional arrays.

Array elements may be initialized with the variable[xx] notation

variable[xx]=1

Initialize an array during declaration

bash name=(firstname ’last name’)

tcsh set name = (firstname ’last name’)

reference an element i of an array name

${name[i]}
print the whole array

bash ${name[@]}
tcsh ${name}

print length of array

bash ${#name[@]}
tcsh ${#name}

42 / 76

Arrays II

print length of element i of array name

${#name[i]}
Note: In bash ${#name} prints the length of the first element of the array

Add an element to an existing array

bash name=(title ${name[@]})
tcsh set name = (title "${name}")

In tcsh everything within ”...” is one variable.

In the above tcsh example, title is first element of new array while the second
element is the old array name

copy an array name to an array user

bash user=(${name[@]})
tcsh set user = (${name})

43 / 76

Arrays III

concatenate two arrays

bash nameuser=(${name[@]} ${user[@]})
tcsh set nameuser=(${name} ${user})

delete an entire array

unset name

remove an element i from an array

bash unset name[i]

tcsh @ j = $i - 1

@ k =$i + 1

set name = (${name[1-$j]} ${name[$k-]})
bash the first array index is zero (0)

tcsh the first array index is one (1)

44 / 76

Arrays IV

name.sh

#!/bin/bash

echo "Print your first and last name"
read firstname lastname

name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation"
read title

echo "Enter your suffix"
read suffix

name=($title "${name[@]}" $suffix)

echo "Hello " ${name[@]}

unset name [2]

echo "Hello " ${name[@]}

name.csh

#!/bin/tcsh

echo "Print your first name"

set firstname = $<
echo "Print your last name"

set lastname = $<

set name = ($firstname $lastname)

echo "Hello " ${name}

echo "Enter your salutation"

set title = $<

echo "Enter your suffix"

set suffix = "$<"

set name = ($title $name $suffix)

echo "Hello " ${name}

@ i = $#name

set name = ($name [1-2] $name[4-$i])

echo "Hello " ${name}

~/Tutorials/BASH/scripts/day1/examples> ./name.sh
Print your first and last name
Alex Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

~/Tutorials/BASH/scripts/day1/examples> ./name.csh
Print your first name
Alex
Print your last name
Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

45 / 76

Command Line Arguments

Similar to programming languages, bash (and other shell scripting languages) can also
take command line arguments

./scriptname arg1 arg2 arg3 arg4 ...

$0,$1,$2,$3, etc: positional parameters corresponding to
./scriptname,arg1,arg2,arg3,arg4,... respectively
$#: number of command line arguments
$*: all of the positional parameters, seen as a single word
$@: same as $* but each parameter is a quoted string.
shift N: shift positional parameters from N+1 to $# are renamed to variable
names from $1 to $# - N + 1

In csh,tcsh

an array argv contains the list of arguments with argv[0] set to name of script.
#argv is the number of arguments i.e. length of argv array.

46 / 76

shift.sh

#!/bin/bash

USAGE="USAGE: $0 <at least 1 argument >"

if [["$#" -lt 1]]; then

echo $USAGE
exit

fi

echo "Number of Arguments: " $#

echo "List of Arguments: " $@

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 $*

while ["$#" -gt 0]; do

echo "Argument List is: " $@

echo "Number of Arguments: " $#
shift

done

shift.csh

#!/bin/tcsh

set USAGE="USAGE: $0 <at least 1 argument >"

if ("$#argv" < 1) then

echo $USAGE
exit

endif

echo "Number of Arguments: " $#argv

echo "List of Arguments: " ${argv}

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 ${argv}

while ("$#argv" > 0)

echo "Argument List is: " $*

echo "Number of Arguments: " $#argv
shift

end

dyn100085:examples apacheco$./shift.sh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5

Name of script that you are running: ./shift.sh

Command You Entered: ./shift.sh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

dyn100085:examples apacheco$./shift.csh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5

Name of script that you are running: ./shift.csh

Command You Entered: ./shift.csh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

47 / 76

Declare command

Use the declare command to set variable and functions attributes.

Create a constant variable i.e. read only variable

Syntax:

declare -r var

declare -r varName=value

Create an integer variable

Syntax:

declare -i var

declare -i varName=value

You can carry out arithmetic operations on variables declared as integers

~/Tutorials/BASH> j=10/5 ; echo $j

10/5

~/Tutorials/BASH> declare -i j; j=10/5 ; echo $j

2

48 / 76

Functions I

Like ”real” programming languages, bash has functions.

A function is a subroutine, a code block that implements a set of operations, a ”black
box” that performs a specified task.

Wherever there is repetitive code, when a task repeats with only slight variations in
procedure, then consider using a function.

function function_name {

command

}

OR

function_name () {

command

}

49 / 76

Functions II

shift10.sh

#!/bin/bash

usage () {

echo "USAGE: $0 [atleast 11 arguments]"
exit

}

[["$#" -lt 11]] && usage

echo "Number of Arguments: " $#

echo "List of Arguments: " $@

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 $*

echo "First Argument" $1

echo "Tenth and Eleventh argument" $10 $11 ${10}

${11}

echo "Argument List is: " $@

echo "Number of Arguments: " $#
shift 9

echo "Argument List is: " $@

echo "Number of Arguments: " $#

dyn100085:examples apacheco$./shift10.sh

USAGE: ./shift10.sh [atleast 11 arguments]

dyn100085:examples apacheco$./shift10.sh $(seq 1 10)

USAGE: ./shift10.sh [atleast 11 arguments]

dyn100085:examples apacheco$./shift10.sh ‘seq 1 2 22‘
Number of Arguments: 11
List of Arguments: 1 3 5 7 9 11 13 15 17 19 21

Name of script that you are running: ./shift10.sh

Command You Entered: ./shift10.sh 1 3 5 7 9 11 13 15 17 19
21

First Argument 1
Tenth and Eleventh argument 10 11 19 21
Argument List is: 1 3 5 7 9 11 13 15 17 19 21
Number of Arguments: 11
Argument List is: 19 21
Number of Arguments: 2

dyn100085:examples apacheco$./shift10.sh $(seq 21 2 44)
Number of Arguments: 12
List of Arguments: 21 23 25 27 29 31 33 35 37 39 41 43

Name of script that you are running: ./shift10.sh

Command You Entered: ./shift10.sh 21 23 25 27 29 31 33 35
37 39 41 43

First Argument 21
Tenth and Eleventh argument 210 211 39 41
Argument List is: 21 23 25 27 29 31 33 35 37 39 41 43
Number of Arguments: 12
Argument List is: 39 41 43
Number of Arguments: 3

50 / 76

Functions III

You can also pass arguments to a function.

All function parameters or arguments can be accessed via $1, $2, $3,..., $N.

$0 always point to the shell script name.

$* or $@ holds all parameters or arguments passed to the function.

$# holds the number of positional parameters passed to the function.

Array variable called FUNCNAME contains the names of all shell functions currently in
the execution call stack.

By default all variables are global.

Modifying a variable in a function changes it in the whole script.

You can create a local variables using the local command

Syntax:

local var=value

local varName

51 / 76

Functions IV

A function may recursively call itself even without use of local variables.

factorial3.sh

#!/bin/bash

usage () {

echo "USAGE: $0 <integer >"
exit

}

factorial () {

local i=$1
local f

declare -i i
declare -i f

if [["$i" -le 2 && "$i" -ne 0]]; then

echo $i

elif [["$i" -eq 0]]; then
echo 1

else

f=$(($i - 1))

f=$(factorial $f)

f=$(($f * $i))

echo $f
fi

}

if [["$#" -eq 0]]; then
usage

else

for i in $@ ; do

x=$(factorial $i)

echo "Factorial of $i is $x"
done

fi

dyn100085:examples apacheco$./factorial3.sh $(seq 1 2 11)
Factorial of 1 is 1
Factorial of 3 is 6
Factorial of 5 is 120
Factorial of 7 is 5040
Factorial of 9 is 362880
Factorial of 11 is 39916800

52 / 76

Scripting for Job Submission

Problem Description

I have to run more than one serial job.

Solution: Create a script that will submit and run multiple serial jobs.

I don’t want to submit multiple jobs using the serial queue since

Cluster Admins give lower priority to jobs that are not parallelized
The number of jobs that I want to run exceed the maximum number of jobs that
I can run simultaneously

How do I submit one job which can run multiple serial jobs?

One Solution of many

Write a script which will log into all unique nodes and run your serial jobs in
background.

Easy said than done

What do you need to know?

1 Shell Scripting
2 How to run a job in background
3 Know what the wait command does

53 / 76

[alp514.sol](1012): cat checknodes.slr

#!/bin/bash

#

#SBATCH --partition=lts

#SBATCH --ntasks -per -node=4

#SBATCH --nodes=4

#SBATCH --time=5

#SBATCH --output=nodetest.out

#SBATCH --error=nodetest.err

#SBATCH --job -name=testing

#

export WORK_DIR=${SLURM_SUBMIT_DIR}

srun -s hostname > hostfile

export NPROCS=‘wc -l hostfile |gawk ’//{ print $1}’‘

NODES=(‘cat hostfile ‘)

UNODES=(‘sort hostfile | uniq ‘)

echo ‘‘Nodes Available: ‘‘ ${NODES[@]}

echo ‘‘Unique Nodes Available: ‘‘ ${UNODES[@]}

echo ‘‘Get Hostnames for all processes ’’

i=0

for nodes in ‘‘${NODES[@]}’’; do

ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &

let i=i+1

done

wait

echo ‘‘Get Hostnames for all unique nodes ’’

i=0

NPROCS=‘sort hostfile | uniq | wc -l |gawk ’//{print $1}’‘

let NPROCS -=1

while [$i -le $NPROCS] ; do

ssh -n ${UNODES[$i]} ’echo $HOSTNAME ’$i ’ ’

let i=i+1

done

[alp514.sol](1013): sbatch -p imlab checknodes.slr

Submitted batch job 620045

54 / 76

[alp514.sol](1014): cat nodetest.out

Nodes Available: sol -b411 sol -b411 sol -b411 sol -b411 sol -b413 sol -b412 sol -b501 sol -b413 sol -b413 sol -b413

sol -b412 sol -b412 sol -b412 sol -b501 sol -b501 sol -b501

Unique Nodes Available: sol -b411 sol -b412 sol -b413 sol -b501

Get Hostnames for all processes

sol -b501 14

sol -b501 6

sol -b501 15

sol -b501 13

sol -b413 4

sol -b413 9

sol -b412 11

sol -b412 10

sol -b413 7

sol -b413 8

sol -b412 5

sol -b411 1

sol -b412 12

sol -b411 3

sol -b411 2

sol -b411 0

Get Hostnames for all unique nodes

sol -b411 0

sol -b412 1

sol -b413 2

sol -b501 3

55 / 76

Unix Utilities

grep

grep is a Unix utility that searches through either information piped to it or files in the
current directory.

egrep is extended grep, same as grep -E

Use zgrep for compressed files.

Usage: grep <options> <search pattern> <files>

Commonly used options

Option Operation
-i ignore case during search
-r search recursively
-v invert match i.e. match everything except pattern
-l list files that match pattern
-L list files that do not match pattern
-n prefix each line of output with the line number within its input file.

-A num print num lines of trailing context after matching lines.
-B num print num lines of leading context before matching lines.

57 / 76

sed

sed (“stream editor”) is Unix utility for parsing and transforming text files.

sed is line-oriented, it operates one line at a time and allows regular expression
matching and substitution.

sed has several commands, the most commonly used command and sometime the only
one learned is the substituion command, s

~/Tutorials/BASH/scripts/day1/examples> cat hello.sh | sed ’s/bash/tcsh/g’

#!/bin/tcsh

My First Script

echo ‘‘Hello World!’’

List of sed pattern flags and commands line options

Pattern Operation
s substitution
g global replacement
p print
I ignore case
d delete
G add newline
w write to file
x exchange pattern with hold buffer
h copy pattern to hold buffer

Command Operation
-e combine multiple commands
-f read commands from file
-h print help info
-n disable print
-V print version info
-i in file subsitution

sed one-liners: http://sed.sourceforge.net/sed1line.txt

sed is a handy utility very useful for writing scripts for file manipulation.

58 / 76

http://sed.sourceforge.net/sed1line.txt

awk programming

The Awk text-processing language is useful for such tasks as:

F Tallying information from text files and creating reports from the results.
F Adding additional functions to text editors like “vi”.
F Translating files from one format to another.
F Creating small databases.
F Performing mathematical operations on files of numeric data.

Awk has two faces:

F it is a utility for performing simple text-processing tasks, and
F it is a programming language for performing complex text-processing tasks.

awk comes in three variations

awk : Original AWK by A. Aho, B. W. Kernighnan and P. Weinberger
nawk : New AWK, AT&T’s version of AWK
gawk : GNU AWK, all linux distributions come with gawk. In some distros, awk is a

symbolic link to gawk.

Simplest form of using awk

� awk pattern {action}
� Most common action: print

� Print file dosum.sh: awk ’{print $0}’ dosum.sh

� Print line matching bash in all files in current directory:
awk ’/bash/{print $0}’ *.sh

60 / 76

awk patterns may be one of the following

BEGIN : special pattern which is not tested against input.
Mostly used for preprocessing, setting constants, etc. before input is read.

END : special pattern which is not tested against input.
Mostly used for postprocessing after input has been read.

/regular expression/ : the associated regular expression is matched to each input line that
is read

relational expression : used with the if, while relational operators
&& : logical AND operator used as pattern1 && pattern2.

Execute action if pattern1 and pattern2 are true
|| : logical OR operator used as pattern1 —— pattern2.

Execute action if either pattern1 or pattern2 is true
! : logical NOT operator used as !pattern.

Execute action if pattern is not matched
?: : Used as pattern1 ? pattern2 : pattern3.

If pattern1 is true use pattern2 for testing else use pattern3

pattern1, pattern2 : Range pattern, match all records starting with record that matches

pattern1 continuing until a record has been reached that matches pattern2

print expression is the most common action in the awk statement. If formatted output
is required, use the printf format, expression action.

Format specifiers are similar to the C-programming language

%d,%i : decimal number

%e,%E : floating point number of the form [-]d.dddddd.e[±]dd. The %E format

uses E instead of e.

%f : floating point number of the form [-]ddd.dddddd

61 / 76

%g,%G : Use %e or %f conversion with nonsignificant zeros truncated. The %G

format uses %E instead of %e

%s : character string

Format specifiers have additional parameter which may lie between the % and the
control letter

0 : A leading 0 (zero) acts as a flag, that indicates output should be padded

with zeroes instead of spaces.

width : The field should be padded to this width. The field is normally padded

with spaces. If the 0 flag has been used, it is padded with zeroes.

.prec : A number that specifies the precision to use when printing.

string constants supported by awk

\\ : Literal backslash

\n : newline

\r : carriage-return

\t : horizontal tab

\v : vertical tab

~/Tutorials/BASH/scripts/day1/examples> echo hello 0.2485 5 | awk ’{printf ‘‘%s \t %f \n %d \v %0.5d\

n’’,$1,$2 ,$3,$3}’

hello 0.248500

5

00005

The print command puts an explicit newline character at the end while the printf
command does not.

62 / 76

awk has in-built support for arithmetic operations

Operation Operator
Addition +

Subtraction -
Multiplication *

Division /
Exponentiation **

Modulo %

Assignment Operation Operator
Autoincrement ++
Autodecrement –

Add result to varibale +=
Subtract result from variable -=
Multiple variable by result *=
Divide variable by result /=

~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{print 10%3}’

1

~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{a=10; print a/=5}’

2

awk also supports trignometric functions such as sin(expr) and cos(expr) where expr is
in radians and atan2(y/x) where y/x is in radians

~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{pi=atan2 (1,1)*4; print pi,sin(pi),cos(pi)}’

3.14159 1.22465e-16 -1

63 / 76

Other Arithmetic operations supported are

exp(expr) : The exponential function

int(expr) : Truncates to an integer

log(expr) : The natural Logarithm function

sqrt(expr) : The square root function

rand() : Returns a random number N between 0 and 1 such that 0 ≤ N < 1

srand(expr) : Uses expr as a new seed for random number generator. If expr is not
provided, time of day is used.

awk supports the if and while conditional and for loops

if and while conditionals work similar to that in C-programming

if (condition) {

command1 ;

command2

}

while (condition) {

command1 ;

command2

}

64 / 76

awk supports if ... else if .. else conditionals.

if (condition1) {

command1 ;

command2

} else if (condition2) {

command3

} else {

command4

}

Relational operators supported by if and while

== : Is equal to
!= : Is not equal to
> : Is greater than

>= : Is greater than or equal to
< : Is less than

<= : Is less than or equal to
∼ : String Matches to

!∼ : Doesn’t Match

~/Tutorials/BASH/scripts/day1/examples> awk ’{if (NR > 0){print NR ,’’:’’, $0}}’ hello.sh

1 : #!/bin/bash

2 :

3 : # My First Script

4 :

5 : echo ‘‘Hello World!’’

65 / 76

The for command can be used for processing the various columns of each line

~/Tutorials/BASH/scripts/day1/examples> echo $(seq 1 10) | awk ’BEGIN{a=6}{ for (i=1;i<=NF;i++){a+=$i

}}END{print a}’

61

Like all progamming languages, awk supports the use of variables. Like Shell, variable
types do not have to be defined.

awk variables can be user defined or could be one of the columns of the file being
processed.

~/Tutorials/BASH/scripts/day1/examples> awk ’{print $1}’ hello.sh

#!/bin/bash

#

echo

~/Tutorials/BASH/scripts/day1/examples> awk ’{col=$1;print col ,$2}’ hello.sh

#!/bin/bash

My

echo ‘‘Hello

Unlike Shell, awk variables are referenced as is i.e. no $ prepended to variable name.

awk one-liners: http://www.pement.org/awk/awk1line.txt

66 / 76

http://www.pement.org/awk/awk1line.txt

awk can also be used as a programming language.

The first line in awk scripts is the shebang line (#!) which indicates the location of the awk

binary. Use which awk to find the exact location

On my Linux desktop, the location is /usr/bin/awk.

If unsure, just use /usr/bin/env awk

hello.awk

#!/usr/bin/awk -f

BEGIN {

print "Hello World!"

}

~/Tutorials/BASH/scripts/day2/examples> ./hello.awk

Hello World!

To support scripting, awk has several built-in variables, which can also be used in one line

commands

ARGC : number of command line arguments

ARGV : array of command line arguments

FILENAME : name of current input file

FS : field separator

OFS : output field separator

ORS : output record separator, default is newline

67 / 76

awk permits the use of arrays

arrays are subscripted with an expression between square brackets ([· · ·])

hello1.awk

#!/usr/bin/awk -f

BEGIN {

x[1] = "Hello ,"

x[2] = "World!"

x[3] = "\n"

for (i=1;i<=3;i++)

printf " %s", x[i]

}

~/Tutorials/BASH/scripts/day2/examples> ./hello1.awk

Hello , World!

Use the delete command to delete an array element

awk has in-built functions to aid writing of scripts

length : length() function calculates the length of a string.

toupper : toupper() converts string to uppercase (GNU awk only)

tolower : tolower() converts to lower case (GNU awk only)

split : used to split a string. Takes three arguments: the string, an array and a

separator

gsub : add primitive sed like functionality. Usage gsub(/pattern/,”replacement

pattern”,string)

68 / 76

getline : force reading of new line

Similar to bash, GNU awk also supports user defined function

#!/usr/bin/gawk -f

{

if (NF != 4) {

error(‘‘Expected 4 fields ’’);

} else {

print;

}

}

function error (message) {

if (FILENAME != ‘‘-’’) {

printf(‘‘%s: ‘‘, FILENAME) > ‘‘/dev/tty ’’;

}

printf(‘‘line # %d, %s, line: %s\n’’, NR , message , $0) >>

‘‘/dev/tty ’’;

}

69 / 76

getcpmdvels.sh

#!/bin/bash

narg=($#)
if [$narg -ne 2]; then

echo "2 arguments needed :[Number of atoms] [Velocity file]\n"
exit 1

fi

natom=$1
vels=$2

cat TRAJECTORY | \
awk ’{ if (NR % ’$natom ’ == 0){ \

printf " %s %s %s\n",$5,$6,$7 \
}else{ \

printf " %s %s %s",$5 ,$6,$7 \
} \

}’ > $vels

getengcons.sh

#!/bin/bash

GMSOUT=$1
grep ’TIME MODE ’ $GMSOUT | head -1 > energy.dat
awk ’/ FS BOHR/{ getline;print }’ $GMSOUT >> energy.dat

70 / 76

#!/bin/bash

narg=($#)
if [$narg -ne 6]; then

echo "4 arguments needed: [GAMESS output file] [Number of atoms] [Time Step (fs)] [Coordinates file] [
Velocity file] [Fourier Transform Vel. File]"

exit 1
fi

gmsout=$1
natoms=$2
deltat=$3
coords=$4
vels=$5
ftvels=$6
au2ang =0.5291771
sec2fs =1e15
mass=mass.dat

rm -rf $vels $coords $ftvels

######## Atomic Masses (needed for MW Velocities) ##########
cat $gmsout | sed -n ’/ATOMIC ISOTOPES /,/1 ELECTRON/p’ | \

egrep -i = | \
sed -e ’s/=//g’ | \
xargs | awk ’{for (i=2;i<=NF;i+=2){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass

Use the following with grep
#grep -i -A1 ’ATOMIC ISOTOPES ’ $gmsout | \
grep -iv atomic | \
awk ’{for (i=2;i<=NF;i+=2){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass
Use the following with grep and sed
#grep -i -A1 ’ATOMIC ISOTOPES ’ $gmsout | \
sed -e ’/ATOMIC/d’ -e ’s/[0 -9]=//g’ | \
awk ’{for (i=1;i<=NF;i+=1){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass

######## Coordinates and Velocities ########################
awk ’/ CARTESIAN COORDINATES / { \

icount =3; \
printf "%d\n\n",’$natoms ’
while (getline >0 && icount <=7){ \

print $0 ;\
++ icount \

} \
}’ $gmsout | sed ’/----/d’ > tmp.$$

#egrep -i -A5 ’cartesian coordinates ’ $gmsout | \

71 / 76

sed -e ’/CARTESIAN/d’ -e ’/----/d’ > tmp.$$
#
cat tmp.$$ | cut -c -42 | \

awk ’{if (NF == 4){ \
printf " %4.2f %9.6f %9.6f %9.6f\n",$1,$2*’$au2ang ’,$3*’$au2ang ’,$4*’$au2ang ’ \

} else { \
print $0 \

} \
}’ > $coords

cat tmp.$$ | cut -c 42- | sed ’/^ *$/d’ | \
awk ’{if (NR % ’$natoms ’ ==0){ \

printf " %15.8e %15.8e %15.8e\n",$1*’$sec2fs ’,$2*’$sec2fs ’,$3*’$sec2fs ’ \
} \

else { \
printf " %15.8e %15.8e %15.8e",$1*’$sec2fs ’,$2*’$sec2fs ’,$3*’$sec2fs ’ \

} \
}’ > $vels

rm -rf tmp.$$

octave -q <<EOF
vels=load("$vels");
atmass=load("$mass");
atmass=diag(atmass);
mwvels=vels*atmass;
ftmwvels=abs(fft(mwvels));
N=rows(ftmwvels);
M=columns(ftmwvels);
deltaw =1/N/$deltat;
fid=fopen("$ftvels","w");
for I=[1:N]

sumft =0;
for J=[1:M]

sumft=sumft+ftmwvels(I,J)^2;
endfor
fprintf(fid ," %15.8e %21.14e\n",(I-1)*deltaw ,sumft);

endfor
fclose(fid);
EOF

72 / 76

getmwvels.awk

#!/usr/bin/awk -f
BEGIN{

if(ARGC < 3){
printf "3 arguments needed :[Gaussian log file] [Number of atoms] [MW Velocity file]\n";
exit;

}
gaulog = ARGV [1];
natom = ARGV [2];
vels = ARGV [3];
delete ARGV [2];
delete ARGV [3];

}
/^ *MW Cartesian velocity :/ {

icount =1;
while((getline > 0)&&icount <=natom +1){

if(icount >=2){
gsub(/D/,"E") ;
printf "%16.8e%16.8e%16.8e",$4,$6 ,$8 > vels;

}
++ icount;

}
printf "\n" > vels;

}

73 / 76

gettrajxyz.awk

#!/usr/bin/awk -f
BEGIN{

if(ARGC < 3){
printf "3 arguments needed :[Gaussian log file] [Number of atoms] [Coordinates file]\n";
exit;

}
gaulog = ARGV [1];
natom = ARGV [2];
coords = ARGV [3];
delete ARGV [2];
delete ARGV [3];

}
/^ *Input orientation :/ {

icount =1;
printf "%d\n\n",natom > coords;
while((getline > 0)&&icount <=natom +4){

if(icount >=5){
printf "%5d%16.8f%16.8f%16.8f\n",$2,$4 ,$5,$6 > coords;

}
++ icount;

}

}

74 / 76

Wrap Up

References & Further Reading

BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Advanced Bash-Scripting Guide http://tldp.org/LDP/abs/html/

Regular Expressions http://www.grymoire.com/Unix/Regular.html

AWK Programming http://www.grymoire.com/Unix/Awk.html

awk one-liners: http://www.pement.org/awk/awk1line.txt

sed http://www.grymoire.com/Unix/Sed.html

sed one-liners: http://sed.sourceforge.net/sed1line.txt

CSH Programming http://www.grymoire.com/Unix/Csh.html

csh Programming Considered Harmful

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

76 / 76

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/Regular.html
http://www.grymoire.com/Unix/Awk.html
http://www.pement.org/awk/awk1line.txt
http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt
http://www.grymoire.com/Unix/Csh.html
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://en.wikibooks.org/wiki/Subject:Computing

	Introduction
	Types of Shell
	Variables
	File Permissions
	Input and Output

	Shell Scripting
	Getting Started with Writing Simple Scripts
	Arithmetic Operations
	Flow Control
	Arrays
	Command Line Arguments
	Functions

	Unix Utilities
	grep
	sed

	awk programming
	Wrap Up

