
Shell Scripting

Variables, Arrays & Control Constructs

Alexander B. Pacheco
LTS Research Computing

September 29 2015

http://researchcomputing.lehigh.edu

Outline

1 Introduction
Types of Shell
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Wrap Up

5 Hands-On Exercises

2 / 68

Introduction

Introduction

What is a SHELL

The command line interface is the primary interface to Linux/Unix operating systems.

Shells are how command-line interfaces are implemented in Linux/Unix.

Each shell has varying capabilities and features and the user should choose the shell
that best suits their needs.

The shell is simply an application running on top of the kernel and provides a powerful
interface to the system.

4 / 68

Types of Shell

sh : Bourne Shell

� Developed by Stephen Bourne at AT&T Bell Labs

csh : C Shell

� Developed by Bill Joy at University of California, Berkeley

ksh : Korn Shell

� Developed by David Korn at AT&T Bell Labs
� backward-compatible with the Bourne shell and includes many features of the C

shell

bash : Bourne Again Shell

� Developed by Brian Fox for the GNU Project as a free software replacement for
the Bourne shell (sh).

� Default Shell on Linux and Mac OSX
� The name is also descriptive of what it did, bashing together the features of sh,

csh and ksh

tcsh : TENEX C Shell

� Developed by Ken Greer at Carnegie Mellon University
� It is essentially the C shell with programmable command line completion,

command-line editing, and a few other features.

5 / 68

Shell Comparison

sh csh ksh bash tcsh
Programming Language 3 3 3 3 3

Shell Variables 3 3 3 3 3
Command alias 7 3 3 3 3

Command history 7 3 3 3 3
Filename completion 7 M M 3 3

Command line editing 7 7 M 3 3
Job control 7 3 3 3 3

3 : Yes

7 : No

M : Yes, not set by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

6 / 68

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Variables I

A variable is a named object that contains data used by one or more applications.

There are two types of variables, Environment and User Defined and can contain a
number, character or a string of characters.

Environment Variables provides a simple way to share configuration settings between
multiple applications and processes in Linux.

As in programming languages like C, C++ and Fortran, defining your own variables
makes the program or script extensible by you or a third party

Rules for Variable Names

1 Variable names must start with a letter or underscore
2 Number can be used anywhere else
3 DO NOT USE special characters such as @, #, %, $
4 Case sensitive
5 Examples

Allowed: VARIABLE, VAR1234able, var name, VAR
Not Allowed: 1VARIABLE, %NAME, $myvar, VAR@NAME

To reference a variable, environment or user defined, you need to prepend the variable
name with ”$” as in $VARIABLE, $PATH, etc.

7 / 68

Variables II

Its a good practice to protect your variable name within {. . . } such as ${PATH} when
referencing it. (We’ll see an example in a few slides)

Assigning value to a variable

Type sh,ksh,bash csh,tcsh
Shell name=value set name = value

Environment export name=value setenv name value

sh,ksh,bash THERE IS NO SPACE ON EITHER SIDE OF =

csh,tcsh space on either side of = is allowed for the set command

csh,tcsh There is no = in the setenv command

8 / 68

File Permissions I

In *NIX OS’s, you have three types of file permissions

1 read (r)
2 write (w)
3 execute (x)

for three types of users

1 user
2 group
3 world i.e. everyone else who has access to the system

drwxr-xr-x. 2 user user 4096 Jan 28 08:27 Public
-rw-rw-r- -. 1 user user 3047 Jan 28 09:34 README

The first character signifies the type of the file

d for directory

l for symbolic link

- for normal file

The next three characters of first triad signifies what the owner can do

The second triad signifies what group member can do

9 / 68

File Permissions II

The third triad signifies what everyone else can do

d rwx︸︷︷︸
u

g︷ ︸︸ ︷
r − x r − x︸ ︷︷ ︸

o

Read carries a weight of 4

Write carries a weight of 2

Execute carries a weight of 1

The weights are added to give a value of 7 (rwx), 6(rw), 5(rx) or 3(wx) permissions.

chmod is a *NIX command to change permissions on a file

To give user rwx, group rx and world x permission, the command is

chmod 751 filename

Instead of using numerical permissions you can also use symbolic mode

u/g/o or a user/group/world or all i.e. ugo

+/- Add/remove permission

r/w/x read/write/execute

10 / 68

File Permissions III

Give everyone execute permission:

chmod a+x hello.sh

chmod ugo+x hello.sh

Remove group and world read & write permission:

chmod go-rw hello.sh

Use the -R flag to change permissions recursively, all files and directories and their
contents.

chmod -R 755 ${HOME}/*
What is the permission on ${HOME}?

11 / 68

Input/Output I

The command echo is used for displaying output to screen

For reading input from screen/keyboard/prompt

bash read

tcsh $<

The read statement takes all characters typed until the Enter key is pressed and

stores them into a variable.

Syntax read <variable name>

Example read name Enter

Alex Pacheco

$< can accept only one argument. If you have multiple arguments, enclose the $<

within quotes e.g. "$<"

Syntax: set <variable> = $<

Example: set name = "$<" Enter

Alex Pacheco

In the above examples, the name that you enter in stored in the variable name.

Use the echo command to print the variable name to the screen

12 / 68

Input/Output II

echo $name Enter

The echo statement can print multiple arguments.

By default, echo eliminates redundant whitespace (multiple spaces and tabs) and
replaces it with a single whitespace between arguments.

To include redundant whitespace, enclose the arguments within double quotes

echo Welcome to HPC Training (more than one space between HPC and
Training)

echo "Welcome to HPC Training"

read name or set name = "$<"

Alex Pacheco

echo $name

echo "$name"

13 / 68

Input/Output III

You can also use the printf command to display output

Syntax: printf <format> <arguments>

Example: printf "$name"

printf "%s\n" "$name"

Format Descriptors

%s print argument as a string
%d print argument as an integer
%f print argument as a floating point number
\n print new line

you can add a width for the argument between the % and {s,d,f} fields
%4s, %5d, %7.4f

The printf command is used in awk to print formatted data (more on this later)

14 / 68

I/O Redirection

There are three file descriptors for I/O streams

1 STDIN: Standard Input
2 STDOUT: Standard Output
3 STDERR: Standard Error

1 represents STDOUT and 2 represents STDOUT

I/O redirection allows users to connect applications

< : connects a file to STDIN of an application
> : connects STDOUT of an application to a file

>> : connects STDOUT of an application by appending to a file
| : connects the STDOUT of an application to STDIN of another application.

Examples:

1 write STDOUT to file: ls -l > ls-l.out
2 write STDERR to file: ls -l 2> ls-l.err
3 write STDOUT to STDERR: ls -l 1>&2
4 write STDERR to STDOUT: ls -l 2>&1
5 send STDOUT as STDIN: ls -l | wc -l

15 / 68

Shell Scripting Basics

What is a scripting Language?

A scripting language or script language is a programming language that supports
the writing of scripts.

Scripting Languages provide a higher level of abstraction than standard
programming languages.

Compared to programming languages, scripting languages do not distinguish between
data types: integers, real values, strings, etc.

Scripting Languages tend to be good for automating the execution of other programs.

� analyzing data
� running daily backups

They are also good for writing a program that is going to be used only once and then
discarded.

A script is a program written for a software environment that automate the execution
of tasks which could alternatively be executed one-by-one by a human operator.

The majority of script programs are “quick and dirty”, where the main goal is to get
the program written quickly.

17 / 68

Writing your first script

Three things to do to write and execute a script

1 Write a script

A shell script is a file that contains ASCII text.
Create a file, hello.sh with the following lines

#!/bin/bash

My First Script

echo "Hello World!"

2 Set permissions

~/Tutorials/BASH/scripts> chmod 755 hello.sh

OR

~/Tutorials/BASH/scripts> chmod a+x hello.sh

3 Execute the script

~/Tutorials/BASH/scripts> ./hello.sh

Hello World!

4 If you do not set execute permission for the script, then

~/Tutorials/BASH/scripts> sh hello.sh

Hello World!

18 / 68

Description of the script

My First Script

#!/bin/bash

My First Script

echo "Hello World!"

The first line is called the ”ShaBang” line. It tells the OS which interpreter to use. In
the current example, bash

Other options are:

� sh : #!/bin/sh

� ksh : #!/bin/ksh

� csh : #!/bin/csh

� tcsh: #!/bin/tcsh

The second line is a comment. All comments begin with ”#”.

The third line tells the OS to print ”Hello World!” to the screen.

19 / 68

Special Characters

#: starts a comment.

$: indicates the name of a variable.

\: escape character to display next character literally.

{ }: used to enclose name of variable.

; Command separator [semicolon]. Permits putting two or more commands
on the same line.

;; Terminator in a case option [double semicolon].

. ”dot” command [period]. Equivalent to source. This is a bash builtin.

$? exit status variable.

$$ process ID variable.

[] test expression

[[]] test expression, more flexible than []

$[], (()) integer expansion

||, &&, ! Logical OR, AND and NOT

20 / 68

Quotation

Double Quotation " "

Enclosed string is expanded (”$”, ”/” and ”‘”)
Example: echo "$myvar" prints the value of myvar

Single Quotation ’ ’

Enclosed string is read literally
Example: echo ’$myvar’ prints $myvar

Back Quotation ‘ ‘

Used for command substitution
Enclosed string is executed as a command
Example: echo ‘pwd‘ prints the output of the pwd command i.e. print working
directory
In bash, you can also use $(· · ·) instead of ‘· · · ‘
e.g. $(pwd) and ‘pwd‘ are the same

21 / 68

Example

#!/bin/bash

HI=Hello

echo HI # displays HI

echo $HI # displays Hello

echo \$HI # displays $HI

echo "$HI" # displays Hello

echo ’$HI ’ # displays $HI

echo "$HIAlex" # displays nothing

echo "${HI}Alex" # displays HelloAlex

echo ‘pwd ‘ # displays working directory

echo $(pwd) # displays working directory

~/Tutorials/BASH/scripts/day1/examples> ./quotes.sh

HI

Hello

$HI

Hello

$HI

HelloAlex

/home/apacheco/Tutorials/BASH/scripts/day1/examples

/home/apacheco/Tutorials/BASH/scripts/day1/examples

~/Tutorials/BASH/scripts/day1/examples>

22 / 68

Beyond Basic Shell Scripting

Arithmetic Operations I

You can carry out numeric operations on integer variables

Operation Operator
Addition +

Subtraction -
Multiplication *

Division /
Exponentiation ** (bash only)

Modulo %

Arithmetic operations in bash can be done within the $((· · ·)) or $[· · ·] commands

F Add two numbers: $((1+2))

F Multiply two numbers: $[$a*$b]

F You can also use the let command: let c=$a-$b

F or use the expr command: c=‘expr $a - $b‘

24 / 68

Arithmetic Operations II

In tcsh,

F Add two numbers: @ x = 1 + 2

F Divide two numbers: @ x = $a / $b

F You can also use the expr command: set c = ‘expr $a % $b‘

Note the use of space

bash space required around operator in the expr command

tcsh space required between @ and variable, around = and numeric operators.

You can also use C-style increment operators

bash let c+=1 or let c--

tcsh @ x -= 1 or @ x++

/=, *= and %= are also allowed.

bash

The above examples only work for integers.

What about floating point number?

25 / 68

Arithmetic Operations III

Using floating point in bash or tcsh scripts requires an external calculator like GNU
bc.

F Add two numbers:
echo "3.8 + 4.2" | bc

F Divide two numbers and print result with a precision of 5 digits:
echo "scale=5; 2/5" | bc

F Call bc directly:
bc <<< "scale=5; 2/5"

F Use bc -l to see result in floating point at max scale:
bc -l <<< "2/5"

You can also use awk for floating point arithmetic.

26 / 68

Arrays I

bash and tcsh supports one-dimensional arrays.

Array elements may be initialized with the variable[xx] notation

variable[xx]=1

Initialize an array during declaration

bash name=(firstname ’last name’)

tcsh set name = (firstname ’last name’)

reference an element i of an array name

${name[i]}
print the whole array

bash ${name[@]}
tcsh ${name}

print length of array

bash ${#name[@]}
tcsh ${#name}

27 / 68

Arrays II

print length of element i of array name

${#name[i]}
Note: In bash ${#name} prints the length of the first element of the array

Add an element to an existing array

bash name=(title ${name[@]})
tcsh set name = (title "${name}")

In tcsh everything within ”...” is one variable.

In the above tcsh example, title is first element of new array while the second
element is the old array name

copy an array name to an array user

bash user=(${name[@]})
tcsh set user = (${name})

28 / 68

Arrays III

concatenate two arrays

bash nameuser=(${name[@]} ${user[@]})
tcsh set nameuser=(${name} ${user})

delete an entire array

unset name

remove an element i from an array

bash unset name[i]

tcsh @ j = $i - 1

@ k =$i + 1

set name = (${name[1-$j]} ${name[$k-]})
bash the first array index is zero (0)

tcsh the first array index is one (1)

29 / 68

Arrays IV

name.sh

#!/bin/bash

echo "Print your first and last name"
read firstname lastname

name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation"
read title

echo "Enter your suffix"
read suffix

name=($title "${name[@]}" $suffix)

echo "Hello " ${name[@]}

unset name [2]

echo "Hello " ${name[@]}

name.csh

#!/bin/tcsh

echo "Print your first name"

set firstname = $<
echo "Print your last name"

set lastname = $<

set name = ($firstname $lastname)

echo "Hello " ${name}

echo "Enter your salutation"

set title = $<

echo "Enter your suffix"

set suffix = "$<"

set name = ($title $name $suffix)

echo "Hello " ${name}

@ i = $#name

set name = ($name [1-2] $name[4-$i])

echo "Hello " ${name}

~/Tutorials/BASH/scripts/day1/examples> ./name.sh
Print your first and last name
Alex Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

~/Tutorials/BASH/scripts/day1/examples> ./name.csh
Print your first name
Alex
Print your last name
Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

30 / 68

Flow Control

Shell Scripting Languages execute commands in sequence similar to programming
languages such as C, Fortran, etc.

Control constructs can change the sequential order of commands.

Control constructs available in bash and tcsh are

1 Conditionals: if
2 Loops: for, while, until
3 Switches: case, switch

31 / 68

if statement

An if/then construct tests whether the exit status of a list of commands is 0, and if
so, executes one or more commands.

bash

if [condition1]; then

some commands

elif [condition2]; then

some commands

else

some commands

fi

tcsh

if (condition1) then

some commands

else if (condition2) then

some commands

else

some commands

endif

Note the space between condition and ”[” ”]”

bash is very strict about spaces.

tcsh commands are not so strict about spaces.

tcsh uses the if-then-else if-else-endif similar to Fortran.

32 / 68

Comparison Operators

Integer Comparison
Operation bash tcsh
equal to if [1 -eq 2] if (1 == 2)

not equal to if [$a -ne $b] if ($a != $b)

greater than if [$a -gt $b] if ($a > $b)

greater than or equal to if [1 -ge $b] if (1 >= $b)

less than if [$a -lt 2] if ($a < 2)

less than or equal to if [[$a -le $b]] if ($a <= $b)

String Comparison
operation bash tcsh
equal to if [$a == $b] if ($a == $b)

not equal to if [$a != $b] if ($a != $b)

zero length or null if [-z $a] if ($%a == 0)

non zero length if [-n $a] if ($%a > 0)

33 / 68

File Test & Logical Operators

File Test Operators
Operation bash tcsh
file exists if [-e .bashrc] if (-e .tcshrc)

file is a regular file if [-f .bashrc]

file is a directory if [-d /home] if (-d /home)

file is not zero size if [-s .bashrc] if (! -z .tcshrc)

file has read permission if [-r .bashrc] if (-r .tcshrc)

file has write permission if [-w .bashrc] if (-w .tcshrc)

file has execute permission if [-x .bashrc] if (-x .tcshrc)

Logical Operators
Operation bash tcsh
Operation bash tcsh

NOT if [! -e .bashrc] if (! -z .tcshrc)

AND if [$a -eq 2] && [$x -gt $y] if ($a == 2 && $x <= $y)

OR if [[$a -eq 2 || $x -gt $y]] if ($a == 2 || $x <= $y)

34 / 68

Examples

Condition tests using the if/then may be nested

read a

if ["$a" -gt 0]; then

if ["$a" -lt 5]; then

echo "The value of \"a\" lies somewhere between 0

and 5"

fi

fi

set a = $<

if ($a > 0) then

if ($a < 5) then

echo "The value of $a lies somewhere between

0 and 5"

endif

endif

This is same as

read a

if [["$a" -gt 0 && "$a" -lt 5]]; then

echo "The value of $a lies somewhere between 0 and

5"

fi

OR

if ["$a" -gt 0] && ["$a" -lt 5]; then

echo "The value of $a lies somewhere between 0 and

5"

fi

set a = $<

if ("$a" > 0 && "$a" < 5) then

echo "The value of $a lies somewhere between 0

and 5"

endif

35 / 68

Loop Constructs

A loop is a block of code that iterates a list of commands as long as the loop control
condition is true.

Loop constructs available in

bash: for, while and until

tcsh: foreach and while

36 / 68

bash: for loops

The for loop is the basic looping construct in bash

for arg in list

do

some commands

done

the for and do lines can be written on the same line: for arg in list ; do

for loops can also use C style syntax

for ((EXP1; EXP2; EXP3)); do

some commands

done

for i in $(seq 1 10)

do

touch file${i}.dat

done

for i in $(seq 1 10); do

touch file${i}.dat

done

for ((i=1;i <=10;i++))

do

touch file${i}.dat

done

37 / 68

tcsh: foreach loop

The foreach loop is the basic looping construct in tcsh

foreach arg (list)

some commands

end

foreach i (‘seq 1 10‘)

touch file$i.dat

end

38 / 68

while Construct

The while construct tests for a condition at the top of a loop, and keeps looping as
long as that condition is true (returns a 0 exit status).

In contrast to a for loop, a while loop finds use in situations where the number of loop
repetitions is not known beforehand.

bash

while [condition]

do

some commands

done

tcsh

while (condition)

some commands

end

factorial.sh

#!/bin/bash

echo -n "Enter a number less than 10: "

read counter

factorial =1

while [$counter -gt 0]

do

factorial=$(($factorial * $counter))

counter=$(($counter - 1))

done

echo $factorial

factorial.csh

#!/bin/tcsh

echo -n "Enter a number less than 10: "

set counter = $<

set factorial = 1

while ($counter > 0)

@ factorial = $factorial * $counter

@ counter -= 1

end

echo $factorial

39 / 68

until Contruct (bash only)

The until construct tests for a condition at the top of a loop, and keeps looping as
long as that condition is false (opposite of while loop).

until [condition is true]

do

some commands

done

factorial2.sh

#!/bin/bash

echo -n "Enter a number less than 10: "

read counter

factorial =1

until [$counter -le 1]; do

factorial=$[$factorial * $counter]

if [$counter -eq 2]; then

break

else

let counter -=2

fi

done

echo $factorial

40 / 68

Nested Loops

for, while & until loops can nested. To exit from the loop use the break command

nestedloops.sh

#!/bin/bash

Example of Nested loops

echo "Nested for loops"

for a in $(seq 1 5) ; do

echo "Value of a in outer loop:" $a
for b in ‘seq 1 2 5‘ ; do

c=$(($a*$b))

if [$c -lt 10]; then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

fi
done

done
echo "========================"
echo
echo "Nested for and while loops"

for ((a=1;a<=5;a++)); do

echo "Value of a in outer loop:" $a
b=1

while [$b -le 5]; do

c=$(($a*$b))

if [$c -lt 5]; then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 5"
break

fi
let b+=2

done
done
echo "========================"

nestedloops.csh

#!/bin/tcsh

Example of Nested loops

echo "Nested for loops"

foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a

foreach b (‘seq 1 2 5‘)

@ c = $a * $b

if ($c < 10) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

endif
end

end
echo "========================"
echo
echo "Nested for and while loops"

foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a
set b = 1

while ($b <= 5)

@ c = $a * $b

if ($c < 5) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 5"
break

endif

@ b = $b + 2
end

end
echo "========================"

~/ Tutorials/BASH/scripts/day1/examples > ./
nestedloops.sh

Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

~/ Tutorials/BASH/scripts > ./day1/examples/
nestedloops.csh

Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

41 / 68

Switching or Branching Constructs I

The case and select constructs are technically not loops, since they do not iterate the

execution of a code block.

Like loops, however, they direct program flow according to conditions at the top or bottom

of the block.

case construct

case variable in

"condition1")

some command

;;

"condition2")

some other command

;;

esac

select construct

select variable [list]

do

command

break

done

42 / 68

Switching or Branching Constructs II

tcsh has the switch construct

switch construct

switch (arg list)

case "variable"

some command

breaksw

endsw

43 / 68

dooper.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"

operations=’add subtract multiply divide exponentiate
modulo all quit ’

select oper in $operations ; do

case $oper in

"add")

echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")

echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")

echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")

echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")

echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")

echo "$num1 + $num2 =" $[$num1 + $num2]

echo "$num1 - $num2 =" $[$num1 - $num2]

echo "$num1 * $num2 =" $[$num1 * $num2]

echo "$num1 ** $num2 =" $[$num1 ** $num2]

echo "$num1 / $num2 =" $[$num1 / $num2]

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

*)
exit
;;

esac
done

dooper.csh

#!/bin/tcsh

echo "Print two numbers one at a time"

set num1 = $<

set num2 = $<
echo "What operation do you want to do?"

echo "Enter +, -, x, /, % or all"

set oper = $<

switch ($oper)
case "x"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"
breaksw

case "all"

@ sum = $num1 + $num2

echo "$num1 + $num2 = $sum"

@ diff = $num1 - $num2

echo "$num1 - $num2 = $diff"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"

@ ratio = $num1 / $num2

echo "$num1 / $num2 = $ratio"

@ remain = $num1 % $num2

echo "$num1 % $num2 = $remain"
breaksw

case "*"

@ result = $num1 $oper $num2

echo "$num1 $oper $num2 = $result"
breaksw

endsw

44 / 68

~/Tutorials/BASH/scripts> ./day1/examples/dooper.sh

Print two numbers

1 4

What operation do you want to do?

1) add 3) multiply 5) exponentiate 7) all

2) subtract 4) divide 6) modulo 8) quit

#? 7

1 + 4 = 5

1 - 4 = -3

1 * 4 = 4

1 ** 4 = 1

1 / 4 = 0

1 % 4 = 1

#? 8

~/Tutorials/BASH/scripts> ./day1/examples/dooper.csh

Print two numbers one at a time

1

5

What operation do you want to do?

Enter +, -, x, /, % or all

all

1 + 5 = 6

1 - 5 = -4

1 * 5 = 5

1 / 5 = 0

1 % 5 = 1

45 / 68

dooper1.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"
echo "Options are add , subtract , multiply ,

exponentiate , divide , modulo and all"
read oper

case $oper in

"add")

echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")

echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")

echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")

echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")

echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")

echo "$num1 + $num2 =" $[$num1 + $num2]

echo "$num1 - $num2 =" $[$num1 - $num2]

echo "$num1 * $num2 =" $[$num1 * $num2]

echo "$num1 ** $num2 =" $[$num1 ** $num2]

echo "$num1 / $num2 =" $[$num1 / $num2]

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

*)
exit
;;

esac

~/Tutorials/BASH/scripts> ./day1/examples/dooper1.sh

Print two numbers

2 5

What operation do you want to do?

Options are add , subtract , multiply , exponentiate ,

divide , modulo and all

all

2 + 5 = 7

2 - 5 = -3

2 * 5 = 10

2 ** 5 = 32

2 / 5 = 0

2 % 5 = 2

46 / 68

Command Line Arguments

Similar to programming languages, bash (and other shell scripting languages) can also
take command line arguments

./scriptname arg1 arg2 arg3 arg4 ...

$0,$1,$2,$3, etc: positional parameters corresponding to
./scriptname,arg1,arg2,arg3,arg4,... respectively
$#: number of command line arguments
$*: all of the positional parameters, seen as a single word
$@: same as $* but each parameter is a quoted string.
shift N: shift positional parameters from N+1 to $# are renamed to variable
names from $1 to $# - N + 1

In csh,tcsh

an array argv contains the list of arguments with argv[0] set to name of script.
#argv is the number of arguments i.e. length of argv array.

47 / 68

shift.sh

#!/bin/bash

USAGE="USAGE: $0 <at least 1 argument >"

if [["$#" -lt 1]]; then

echo $USAGE
exit

fi

echo "Number of Arguments: " $#

echo "List of Arguments: " $@

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 $*

while ["$#" -gt 0]; do

echo "Argument List is: " $@

echo "Number of Arguments: " $#
shift

done

shift.csh

#!/bin/tcsh

set USAGE="USAGE: $0 <at least 1 argument >"

if ("$#argv" < 1) then

echo $USAGE
exit

endif

echo "Number of Arguments: " $#argv

echo "List of Arguments: " ${argv}

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 ${argv}

while ("$#argv" > 0)

echo "Argument List is: " $*

echo "Number of Arguments: " $#argv
shift

end

dyn100085:examples apacheco$./shift.sh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5

Name of script that you are running: ./shift.sh

Command You Entered: ./shift.sh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

dyn100085:examples apacheco$./shift.csh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5

Name of script that you are running: ./shift.csh

Command You Entered: ./shift.csh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

48 / 68

Declare command

Use the declare command to set variable and functions attributes.

Create a constant variable i.e. read only variable

Syntax:

declare -r var

declare -r varName=value

Create an integer variable

Syntax:

declare -i var

declare -i varName=value

You can carry out arithmetic operations on variables declared as integers

~/Tutorials/BASH> j=10/5 ; echo $j

10/5

~/Tutorials/BASH> declare -i j; j=10/5 ; echo $j

2

49 / 68

Functions I

Like ”real” programming languages, bash has functions.

A function is a subroutine, a code block that implements a set of operations, a ”black
box” that performs a specified task.

Wherever there is repetitive code, when a task repeats with only slight variations in
procedure, then consider using a function.

function function_name {

command

}

OR

function_name () {

command

}

50 / 68

Functions II

shift10.sh

#!/bin/bash

usage () {

echo "USAGE: $0 [atleast 11 arguments]"
exit

}

[["$#" -lt 11]] && usage

echo "Number of Arguments: " $#

echo "List of Arguments: " $@

echo "Name of script that you are running: " $0

echo "Command You Entered:" $0 $*

echo "First Argument" $1

echo "Tenth and Eleventh argument" $10 $11 ${10}

${11}

echo "Argument List is: " $@

echo "Number of Arguments: " $#
shift 9

echo "Argument List is: " $@

echo "Number of Arguments: " $#

dyn100085:examples apacheco$./shift10.sh

USAGE: ./shift10.sh [atleast 11 arguments]

dyn100085:examples apacheco$./shift10.sh $(seq 1 10)

USAGE: ./shift10.sh [atleast 11 arguments]

dyn100085:examples apacheco$./shift10.sh ‘seq 1 2 22‘
Number of Arguments: 11
List of Arguments: 1 3 5 7 9 11 13 15 17 19 21

Name of script that you are running: ./shift10.sh

Command You Entered: ./shift10.sh 1 3 5 7 9 11 13 15 17 19
21

First Argument 1
Tenth and Eleventh argument 10 11 19 21
Argument List is: 1 3 5 7 9 11 13 15 17 19 21
Number of Arguments: 11
Argument List is: 19 21
Number of Arguments: 2

dyn100085:examples apacheco$./shift10.sh $(seq 21 2 44)
Number of Arguments: 12
List of Arguments: 21 23 25 27 29 31 33 35 37 39 41 43

Name of script that you are running: ./shift10.sh

Command You Entered: ./shift10.sh 21 23 25 27 29 31 33 35
37 39 41 43

First Argument 21
Tenth and Eleventh argument 210 211 39 41
Argument List is: 21 23 25 27 29 31 33 35 37 39 41 43
Number of Arguments: 12
Argument List is: 39 41 43
Number of Arguments: 3

51 / 68

Functions III

You can also pass arguments to a function.

All function parameters or arguments can be accessed via $1, $2, $3,..., $N.

$0 always point to the shell script name.

$* or $@ holds all parameters or arguments passed to the function.

$# holds the number of positional parameters passed to the function.

Array variable called FUNCNAME contains the names of all shell functions currently in
the execution call stack.

By default all variables are global.

Modifying a variable in a function changes it in the whole script.

You can create a local variables using the local command

Syntax:

local var=value

local varName

52 / 68

Functions IV

A function may recursively call itself even without use of local variables.

factorial3.sh

#!/bin/bash

usage () {

echo "USAGE: $0 <integer >"
exit

}

factorial () {

local i=$1
local f

declare -i i
declare -i f

if [["$i" -le 2 && "$i" -ne 0]]; then

echo $i

elif [["$i" -eq 0]]; then
echo 1

else

f=$(($i - 1))

f=$(factorial $f)

f=$(($f * $i))

echo $f
fi

}

if [["$#" -eq 0]]; then
usage

else

for i in $@ ; do

x=$(factorial $i)

echo "Factorial of $i is $x"
done

fi

dyn100085:examples apacheco$./factorial3.sh $(seq 1 2 11)
Factorial of 1 is 1
Factorial of 3 is 6
Factorial of 5 is 120
Factorial of 7 is 5040
Factorial of 9 is 362880
Factorial of 11 is 39916800

53 / 68

Scripting for Job Submission

Problem Description

I have to run more than one serial job.

Solution: Create a script that will submit and run multiple serial jobs.

I don’t want to submit multiple jobs using the serial queue since

Cluster Admins give lower priority to jobs that are not parallelized
The number of jobs that I want to run exceed the maximum number of jobs that
I can run simultaneously

How do I submit one job which can run multiple serial jobs?

One Solution of many

Write a script which will log into all unique nodes and run your serial jobs in
background.

Easy said than done

What do you need to know?

1 Shell Scripting
2 How to run a job in background
3 Know what the wait command does

54 / 68

[alp514@corona1 ~]$ cat checknodes.pbs

#!/bin/bash

#

#PBS -q normal

#PBS -l nodes =4: ppn=16

#PBS -l walltime =00:30:00

#PBS -V

#PBS -o nodetest.out

#PBS -e nodetest.err

#PBS -N testing

#PBS -M alp514@lehigh.edu

#PBS -m abe

#

export WORK_DIR=$PBS_O_WORKDIR

export NPROCS=‘wc -l $PBS_NODEFILE |gawk ’//{print $1}’‘

NODES=(‘cat ‘‘$PBS_NODEFILE ’’‘)

UNODES=(‘uniq ‘‘$PBS_NODEFILE ’’‘)

echo ‘‘Nodes Available: ‘‘ ${NODES[@]}

echo ‘‘Unique Nodes Available: ‘‘ ${UNODES[@]}

echo ‘‘Get Hostnames for all processes ’’

i=0

for nodes in ‘‘${NODES[@]}’’; do

ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &

let i=i+1

done

wait

echo ‘‘Get Hostnames for all unique nodes ’’

i=0

NPROCS=‘uniq $PBS_NODEFILE | wc -l |gawk ’//{print $1}’‘

let NPROCS -=1

while [$i -le $NPROCS] ; do

ssh -n ${UNODES[$i]} ’echo $HOSTNAME ’$i ’ ’

let i=i+1

done

[alp514@corona1 ~]$ qsub checknodes.pbs

688825. corona1.cc.lehigh.edu

55 / 68

[alp514@corona1 ~]$ cat nodetest.out

Wed Mar 11 08:20:40 EDT 2015 : erasing contents of corona63 :/ scratch

Wed Mar 11 08:20:40 EDT 2015 : /scratch erased , resetting swap

swapon on /dev/sda6

Wed Mar 11 08:20:41 EDT 2015 : swap reset

Wed Mar 11 08:20:41 EDT 2015 : erasing contents of corona56 :/ scratch

Wed Mar 11 08:20:41 EDT 2015 : /scratch erased , resetting swap

swapon on /dev/sda6

Wed Mar 11 08:20:41 EDT 2015 : swap reset

Wed Mar 11 08:20:41 EDT 2015 : erasing contents of corona50 :/ scratch

Wed Mar 11 08:20:42 EDT 2015 : /scratch erased , resetting swap

swapon on /dev/sda6

Wed Mar 11 08:20:42 EDT 2015 : swap reset

Wed Mar 11 08:20:43 EDT 2015 : erasing contents of corona27 :/ scratch

Wed Mar 11 08:20:43 EDT 2015 : /scratch erased , resetting swap

swapon on /dev/sda6

Wed Mar 11 08:20:43 EDT 2015 : swap reset

Nodes Available: corona63 corona63 corona63 corona63 corona63 corona63 corona63 corona63 corona63 corona63

corona63 corona63 corona63 corona63 corona63 corona63 corona56 corona56 c

orona56 corona56 corona56 corona56 corona56 corona56 corona56 corona56 corona56 corona56 corona56 corona56

corona56 corona56 corona50 corona50 corona50 corona50 corona50 corona50 co

rona50 corona50 corona50 corona50 corona50 corona50 corona50 corona50 corona50 corona50 corona27 corona27

corona27 corona27 corona27 corona27 corona27 corona27 corona27 corona27 cor

ona27 corona27 corona27 corona27 corona27 corona27

Unique Nodes Available: corona63 corona56 corona50 corona27

Get Hostnames for all processes

corona27 52

corona27 59

corona27 60

corona27 57

corona27 51

corona27 62

corona27 54

corona27 48

corona27 63

corona27 58

corona27 53

corona50 43

56 / 68

corona50 40

corona50 38

corona50 33

corona50 34

corona50 47

corona56 31

corona63 13

corona63 6

corona56 22

corona63 9

corona63 14

corona56 16

corona56 25

corona56 23

corona56 17

corona63 5

corona63 10

corona63 8

corona63 15

corona63 3

corona50 32

corona50 44

corona56 18

corona50 36

corona50 46

corona56 27

corona50 42

corona63 1

corona63 12

corona50 45

corona50 41

corona50 35

corona56 29

corona63 7

corona56 28

corona63 11

corona56 26

corona56 21

corona63 4

57 / 68

corona56 24

corona63 0

corona56 20

Get Hostnames for all unique nodes

corona63 0

corona56 1

corona50 2

corona27 3

58 / 68

Wrap Up

References & Further Reading

BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

CSH Programming http://www.grymoire.com/Unix/Csh.html

csh Programming Considered Harmful

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

60 / 68

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.grymoire.com/Unix/Csh.html
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://en.wikibooks.org/wiki/Subject:Computing

Hands-On Exercises

Exercises

1 Create shell scripts to do the following

Write a simple hello world script
Modify the above script to use a variable
Modify the above script to prompt you for your name and then display your
name with a greeting.

2 Write a script to add/subtract/multiply/divide two numbers.

3 Write a script to read your first and last name to an array.

Add your salutation and suffix to the array.
Drop either the salutation or suffix.
Print the array after each of the three steps above.

4 Write a script to calculate the factorial and double factorial of an integer or list of
integers.

62 / 68

Solution 1

hellovariable.sh

#!/bin/bash

Hello World script using a variable
STR="Hello World!"

echo $STR

helloname.sh

#!/bin/bash

My Second Script

echo Please Enter your name:
read name1 name2
Greet="Welcome to HPC Training"

echo "Hello $name1 $name2 , $Greet"

~/ Tutorials/BASH/scripts/day1/solution > ./
hellovariable.sh

Hello World!

~/ Tutorials/BASH/scripts/day1/solution > ./
helloname.sh

Please Enter your name:
Alex Pacheco
Hello Alex Pacheco , Welcome to HPC Training

63 / 68

Solution 2

dosum.sh

#!/bin/bash

echo "Enter two integers"

read num1 num2

echo "$num1 + $num2 = " $num1 + $num2

echo "$num1 + $num2 = " $(($num1 + $num2))

let SUM=$num1+$num2

echo "sum of $num1 & $num2 is " $SUM

echo "$num1/$num2 = " $(echo "scale =5; $num1/

$num2" | bc)

echo "$num2/$num1 = " $(bc -l <<< $num2/$num1)

exit

doratio.csh

#!/bin/tcsh

echo "Enter first integer"

set num1 = $<

set num2 = $<

echo "$num1 / $num2 = " $num1 / $num2

@ RATIO = $num1 / $num2

echo "ratio of $num1 & $num2 is " $RATIO

set ratio=‘echo "scale =5 ; $num1/$num2" | bc‘

echo "ratio of $num1 & $num2 is " $ratio

exit

~/ Tutorials/BASH/scripts/day1/solution > ./dosum.

sh

Enter two integers

5 7

5 + 7 = 5 + 7

5 + 7 = 12

sum of 5 & 7 is 12

5/7 = .71428

7/5 = 1.40000000000000000000

~/ Tutorials/BASH/scripts/day1/solution > ./

doratio.csh

Enter first integer

5

7

5 / 7 = 5 / 7

ratio of 5 & 7 is 0

ratio of 5 & 7 is .71428

64 / 68

Alternate Solution 2

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"

operations=’add subtract multiply divide exponentiate
modulo all quit ’

select oper in $operations ; do

case $oper in

"add")

echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")

echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")

echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")

echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")

echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")

echo "$num1 + $num2 =" $[$num1 + $num2]

echo "$num1 - $num2 =" $[$num1 - $num2]

echo "$num1 * $num2 =" $[$num1 * $num2]

echo "$num1 ** $num2 =" $[$num1 ** $num2]

echo "$num1 / $num2 =" $[$num1 / $num2]

echo "$num1 % $num2 =" $[$num1 % $num2]
;;

*)
exit
;;

esac
done

#!/bin/tcsh

echo "Print two numbers one at a time"

set num1 = $<

set num2 = $<
echo "What operation do you want to do?"

echo "Enter +, -, x, /, % or all"

set oper = $<

switch ($oper)
case "x"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"
breaksw

case "all"

@ sum = $num1 + $num2

echo "$num1 + $num2 = $sum"

@ diff = $num1 - $num2

echo "$num1 - $num2 = $diff"

@ prod = $num1 * $num2

echo "$num1 * $num2 = $prod"

@ ratio = $num1 / $num2

echo "$num1 / $num2 = $ratio"

@ remain = $num1 % $num2

echo "$num1 % $num2 = $remain"
breaksw

case "*"

@ result = $num1 $oper $num2

echo "$num1 $oper $num2 = $result"
breaksw

endsw

65 / 68

Solution 3

name.sh

#!/bin/bash

echo "Print your first and last name"
read firstname lastname

name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation"
read title

echo "Enter your suffix"
read suffix

name=($title "${name[@]}" $suffix)

echo "Hello " ${name[@]}

unset name [2]

echo "Hello " ${name[@]}

name.csh

#!/bin/tcsh

echo "Print your first name"

set firstname = $<
echo "Print your last name"

set lastname = $<

set name = ($firstname $lastname)

echo "Hello " ${name}

echo "Enter your salutation"

set title = $<

echo "Enter your suffix"

set suffix = "$<"

set name = ($title $name $suffix)

echo "Hello " ${name}

@ i = $#name

set name = ($name [1-2] $name[4-$i])

echo "Hello " ${name}

~/ Tutorials/BASH/scripts/day1/solution > ./name.
sh

Print your first and last name
Alex Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

~/ Tutorials/BASH/scripts/day1/solution > ./name.
csh

Print your first name
Alex
Print your last name
Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

66 / 68

Solution 4

fac2.sh

#!/bin/bash

echo "Enter the integer whose factorial and
double factorial you want to calculate"

read counter
factorial =1
i=$counter
while [$i -gt 1]; do

factorial=$[$factorial * $i]
let i-=1

done

i=$counter
dfactorial =1
until [$i -le 2]; do

dfactorial=$[$dfactorial * $i]
let i-=2

done

echo "$counter! = $factorial & $counter !! =
$dfactorial"

fac2.csh

#!/bin/tcsh

echo "Enter the integer whose factorial and
double factorial you want to calculate"

set counter = $<
@ factorial = 1
@ i = $counter
while ($i > 1)

@ factorial = $factorial * $i
@ i--

end

@ i = $counter
@ dfactorial = 1
while ($i >= 1)

@ dfactorial = $dfactorial * $i
@ i = $i - 2

end

echo "$counter \! = $factorial & $counter \!\! =
$dfactorial"

67 / 68

fac3.sh: Alternate Solution 4 (bash only)

#!/bin/bash

usage () {
echo "USAGE: $0 <integer >"
exit

}

factorial () {
local i=$1
local f
local type=$2

declare -i i
declare -i f

if [["$i" -le 2 && "$i" -ne 0]]; then
echo $i

elif [["$i" -eq 0]]; then
echo 1

else
case $type in

"single")
f=$(($i - 1))
;;

"double")
f=$(($i - 2))
;;

esac
f=$(factorial $f $type)
f=$(($f * $i))
echo $f

fi
}

if [["$#" -eq 0]]; then
usage

else
for i in $@ ; do

x=$(factorial $i single)
y=$(factorial $i double)
echo "$i! = $x & $i!! = $y"

done
fi

68 / 68

	Introduction
	Types of Shell
	Variables
	File Permissions
	Input and Output

	Shell Scripting Basics
	Getting Started with Writing Simple Scripts

	Beyond Basic Shell Scripting
	Arithmetic Operations
	Arrays
	Flow Control
	Command Line Arguments
	Functions

	Wrap Up
	Hands-On Exercises

