LEHIGH

UNIVERSITY

Introduction to OpentICC
2021 HPC Workishop: Parallel Programming

Alexander B. Pacheco

Research Computing

July 13 - 15, 2021

http://researchcomputing.lehigh.edu

CPU vs GPU B LEHIGH

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously

GPU enabled applications

|
-1

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

‘Intreduction to OpendICC 2/45 Lol U,

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU

UNIVERSITY

® LEHIGH

CPU : consists of a few cores optimized for sequential serial

processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for

handling multiple tasks simultaneously
GPU enabled applications

Core Core

L1 Cache L1 Cache

Core Core
L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache
L2 Cache

cpu GPU

ntroduction to OperiCC 2/45

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU B LEHIGH

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously

GPU enabled applications

‘Introduction to OpenfICC

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU B LEHIGH

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously

GPU enabled applications

Theoretical I Peak GB/s

T e 2/45 Totstt Hhisorsty P Gy

http://www.nvidia.com/object/gpu-applications.html

GPU Design

® LEHIGH

UNIVERSITY

Model GPU design

+ Large number of
cores working in
SIMD mode.

Slow global
memory access,
high bandwidth.

« CPU
communication
over PCI bus.

Warp scheduling
and fast switching
queue model.

ntroduction to OperiCC

GPU Design

GPU task scheduler

SIMD execution on

streaming multiprocessors

3/45 _4%/ Z/nam{y Dscarek’ g”yMn,

Application Code

Compute-Intensive Functions

Rest of Sequential
5% of Code CPU Code

GPU CPU

‘Introduction to OpenfICC 4/45 Lol Zniorsity Pscarch’ Covppctis

flccelerate Application for GPU B LEHIGH

Applications

Compiler Programming

SJrles Directives Languages

Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

‘Intreduction to OpendICC 5/45 Stk Ztriiersty Pscarck’ Computing

GPU {ccelerated 1ibraries LEHIGH

UNIVERSITY

Linear Algebra NVIDIA \
FFT, BLAS, e, LA tools
SPARSE, Matrix CusPARSE

Numerical & Math j = .
RAND, Statistics) NVIDIA ArrayFlre

Math Lib

Data Struct. & Al

Sort, Scan, Zero Sum

Visual Processing
Image & Video

Software

ntroduction to OperiCC 6/45

Lot Ztiornty Pwarch” Co

GPU Programming languages ® LEHIGH

Numerical analytics}) MATLAB, Mathematica, LabVIEW
CUDA Fortran
CUDAC
CUDA C++
PyCUDA, Copperhead

Alea.cuBase

‘Introduction to OpeniCC

@ We must expose enough parallelism to saturate the device
@ Accelerator threads are slower than CPU threads
@ Accelerators have orders of magnitude more threads

@ Fine grained parallelism is good

@ Coarse grained parallelism is bad
o Lots of legacy apps have only exposed coarse grain parallelism
@ ie. MPI and possibly OpenMP

ntroduction to OperiCC 8/45

‘What is Openf1CC?

® LEHIGH

UNIVERSITY

main() {

<serial code>

. V.
#pragma acc kernels

<compute intensive code>

3

‘Introduction to OpenfICC

9/45

@ Open Standard
@ Easy, Compiler-Driven Approach

@ portable across host CPUs and
accelerators

Lot Ztrivernty Pwarck’

What is OpenICC? ® LEHIGH

@ OpenACC was developed by The Portland Group (PGI), Cray, CAPS
and NVIDIA.

@ PGI, Cray, and CAPs have spent over 2 years developing and shipping
commercial compilers that use directives to enable GPU acceleration as
core technology.

@ The small differences between their approaches allowed the formation
of a group to standardize a single directives approach for accelerators
and CPUs.

@ Full OpenACC 3.1 Specification available online:
https://www.openacc.org/specification

Introduction to Open1CC 10 /45 Stk Yniiersty Pscarck’ Computing

https://www.openacc.org/specification

What is OpentICC? ® LEHIGH

The Standard for GPU Directives

Simple: Directive are the easy path to accelerate compute intensive
applications
‘Open: OpenACC is an open GPU directives standard, making GPU

programming straightforwards and portable across parallel
and multi-core processors

Powerful: GPU directives allow complete access to the massive parallel
power of a GPU

Introduction to Open1CC /45 Lo’ Uirsity Rsarch Computing

What is OpentICC? ® LEHIGH

@ Compiler directives to specify parallel regions in C & Fortran

o Offload parallel regions
@ Portable across OSes, host CPUs, accelerators, and compilers
@ Create high-level heterogenous programs

e Without explicit accelerator intialization
e Without explicit data or program transfers between host and accelerator

High Tevel - - - with low-level access

@ Programming model allows programmers to start simple
@ Compiler gives additional guidance

@ Loop mappings, data location and other performance details
@ Compatible with other GPU languages and libraries

o Interoperate between CUDA C/Fortran and GPU libraries
o e.g. CUFFT, CUBLAS, CUSPARSE, etc

ntroduction to OperiCC 12/45

‘Why Openf1CC B LEHIGH

@ Directives are easy and powerful.
@ Avoid restructuring of existing code for production applications.
@ Focus on expressing parallelism.

OpenACC is not GPU Programming

OpenACC 1s Expressing Parallelism in your code

Introduction to Open1CC 13 /45 Lot Uivrsity Rsarch Compusting

Open1CC Execution Model B LEHIGH

@ Application code runs on the CPU (sequential, shared or distributed
memory)

@ OpenACC directives indicate that the following block of compute
intensive code needs to be offloaded to the GPU or accelerator.

Introduction to Open1CC 14 /45 Lo’ Uirsity Rsarch Computing

OpenfICC Directive Syntax B LEHIGH

UNIVERSITY

#pragma accdirective [clause [,] clause] ...]
... often followed by a structured code block

TFortran

!$acc directive [clause [,] clause] ...]

...often paired with a matching end directive surrounding a structured code
block:

!$acc end directive

ntroduction to OperiCC 15 /45

Letosh Ubiversity Fossarck’ Computing

OpenfICC kernels directive

UNIVERSITY

® LEHIGH

C: #pragma acc kernels [clause]
TFortran !$acc kernels [clause]

@ The kernels directive expresses that a region may contain parallelism
and the compiler determines what can be safely parallelized.

@ The compiler breaks code in the kernel region into a sequence of
kernels for execution on the accelerator device.

@ What is a kernel? A function that runs in parallel on the GPU.

@ When a program encounters a kernels contruct, it will launch a
sequence of kernels in order on the device.

!$acc kernels
doi=1,n

doi=1,n

y() = y(i) + a * x(i)

end do
!$acc end kernels

‘Introduction to OpenfICC

#pragma acc kernels
{
for (i =0; i <n; i+0{
x[i] ;
y[il
}

for (i = 0; i <n; i+
y[il = a*x[i] + y[il;

16 /45

Lo’ Uirsity Rsarch Computing

OpenfICC Parallel Directive B LEHIGH

@ The parallel directive identifies a block of code as having parallelism.
@ Compiler generates a parallel kernel for that loop.
C: #pragma acc parallel [clauses]

Fortran: !$acc parallel [clauses]

1$acc parallel #pragma acc parallel
doi=1,n {

x(i) = 1.0 for (i =0; i <n; i+{

y(i) = 2.0 x[i] = 1.0 ;
end do y[il = 2.0 ;

. ¥
doi=1,n

y() = y(i) + a * x(i) for (i = 05 i < n; i++){
end do y[i] = axx[i] + y[i];
1$acc end parallel }

}

Letosh Ubiversity Fossarck’ Computing

ntroduction to OperiCC 17/45

OpenfICC Toop Directive B LEHIGH

@ Loops are the most likely targets for Parallelizing.
@ The Loop directive is used within a parallel or kernels directive
identifying a loop that can be executed on the accelerator device.
C: #pragma acc loop [clauses]
TFortran: !$acc loop [clauses]
@ The loop directive can be combined with the enclosing parallel or
kernels
C: #pragma acc kernels loop [clauses]
Tortran: !$acc parallel loop [clauses]
@ The loop directive clauses can be used to optimize the code. This
however requires knowledge of the accelerator device.
Clawses: gang, worker, vector, num_gangs, num_workers

1$acc loop #pragma acc loop

doi=1,n for (i =0; i < n; i++){
y(i) = y(i) + a * x(i) y[il = a=x[i] + y[il;

end do 3}

1$acc end loop

ntroduction to OperiCC 18 /45

OpenfICC parallel vs. kernels B LEHIGH

PARAEL

@ Requires analysis by @ Compiler performs
programmer to ensure parallel analysis and
safe parallelism. parallelizes what it

@ Straightforward path believes is safe.
from OpenMP @ Can cover larger area of

code with single directive

@ Gives compiler
additional leeway

Both approaches are equally valid and can perform equally well.

Introduction to Open1CC 19 /45 Stk Yniiersty Pscarck’ Computing

Exercise O LEHIGH

@ Parallelize the saxpy code by adding OpenACC directives - parallel or
kernels

@ Compile the code using the following flags to the NVIDIA HPC SDK
compiler

—acc —gpu=cc75

@ Run the code and compare timing with serial and openmp code

troduction to OpenICC 20/45 Gt Woonrergy (Gt gy

SAXPY: Serial

©

LEHIGH

UNIVERSITY

program saxpy

implicit none
integer :: i,n

real,dimension(:),allocatable :

real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

x = 1.0d0
y = 2.0d0
a = 2.0d0

call cpu_time(start_time)
doi=1,n

y(i) = y(i) + a * x(1)
end do
call cpu_timeCend_time)
deallocate(x,y)

print s

end program saxpy

‘Introduction to OpenfICC

Xy ¥y

, end_time — start_time

21/45

v

22£¢‘M1w<; Rocarch ?;j»74«4n,

SAXPY: OpenMP

OpenM?P Code

program saxpy

implicit none

integer :: i,n,omp_get_max_threads
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

!$omp parallel do default(shared) private(i)

doi=1,n
x(i) = 1.0
y(i) = 1.0
end do
1$omp end parallel do
a=2.0

call cpu_time(start_time)
1Somp parallel do default(shared) private(i)
doi=1,n
y(i) = y(i) + a * x(i)
end do
1$omp end parallel do
call cpu_timeCend_time)

deallocate(x,y)

print s
, end_time — start_time

end program saxpy

‘Introduction to OpenfICC

, omp_get_max_threads(Q), &

©

LEHIGH

UNIVERSITY

g Z?ﬁﬁlMLygi Rcarck ?;;,7ﬁlazﬁz

SAXPY: OpenICC

‘Opent1CC Code

program saxpy

implicit none

integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

!$acc parallel loop

doi=1,n
x(1) = 1.0
y(i) = 1.0
end do
1$acc end parallel loop
a=2.0

call cpu_time(start_time)
!$acc parallel loop
doi=1,n

y(i) = y(i) + a * x(i)
end do
1$acc end parallel loop
call cpu_timeCend_time)
deallocate(x,y)

print s , end_time — start_time

end program saxpy

‘Introduction to OpenfICC

23 /45

©

v

LEHIGH

UNIVERSITY

22£¢‘M1w<; Rocarch ?;j»74«4n,

SAXPY: CUDA Fortran B LEHIGH

module mymodule
contains
attributes(global) subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx¥x—1)*blockDim¥x
1f (i<=n) y(i) = axx(i)+y(i)
end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
integer, parameter :: n = 200000000
real, device :: x_d(n), y_d(n)
real, device :: a_d
real :: start_time, end_time

call cpu_time(start_time)
call saxpy<<<4096, 256>>>(n, a, x_d, y_d)
call cpu_time(end_time)

print
end program main

, end_time — start_time,

troduction to OpenICC 2% /45 Glts Wy Gt oo

SAXPY: Compile & Run

©

LEHIGH

UNIVERSITY

[alp514.s501](1018): nvc —acc —gpu=cc75 —0 saxpyc_acc saxpy_acc.c

@ Specify the gpu architecture: —gpu=cc75

@ Get more information about the compilation: —Minfo=accel

[alp514.hawk—b625](1005): nvfortran —acc —gpu=cc?5 —Minfo=accel —o saxpyf_acc saxpy_acc.f90

saxpy:
12,

12,
13,
15,
15,
16,
20,

20,

‘Introduction to OpenfICC

Generating Tesla code

13, !$acc loop vector(128) ! threadidx%x

Generating implicit copyout(x(1:200000000)) [if not already present]
Loop is parallelizable

Generating Tesla code

16, !$acc loop vector(128) ! threadidx%x

Generating implicit copyout(y(1:200000000)) [if not already present]
Loop is parallelizable

Generating Tesla code

21, !$acc loop gang, vector(128) ! blockidx¥%x threadidx%x
Generating implicit copy(y(1:200000000)) [if not already present]
Generating implicit copyin(x(1:200000000)) [if not already present]

25 /45

bk %mwlﬂ/{y Rscarck

oficting

SAXPY: Compile & Run ® LEHIGH

Tortran Tumings
[Algorithm " Device Time() Speedup |

Serial Xeon Gold 5220R 0.504534
OpenMP (12 threads) ~ Xeon Gold 5220R 0.050300 10.03
OpenMP (24 threads) Xeon Gold 5220R 0.026623 18.95
OpenMP (48 threads) ~ Xeon Gold 5220R 0.025263 19.97
OpenACC Tesla T4 0.517426 0.98
CUDA Tesla T4 0.007846 64.30

C Timinga

Serial Xeon Gold 5220R 0.512128
OpenMP (12 threads) ~ Xeon Gold 5220R 0.056454 9.07
OpenMP (24 threads) Xeon Gold 5220R 0.048442 10.57
OpenMP (48 threads) Xeon Gold 5220R 0.026348 19.44
OpenACC Tesla T4 3.434997 0.15

What’s going with OpenACC code?
Why even bother with OpenACC if performance is so bad?

troduction to OpenICC 26/45 Gt Wy, Gt Cootiy

tinalyzing ‘Opent1CC Run Tume

LEHIGH

UNIVERSITY

©

@ The NVIDIA HPC SDK compiler provides automatic instrumentation

when

[alp514. hawk-b6241(1002): NV_ACC_TIME=1 ./saxpyf_acc-nodata
SAXPY Tine: 0.778822

Accelerator Kernel Timing data

py_acc-nodata. 90
saxpy NVIDIA devicenun=0
time(us): 639,595
11: compute region reached 1 time
11: kernel launched 1 time

1824 min=7,824 avg=7,824
1872 min=7,872 ave

elapsed time(us): total=7,872 max=
: data region reached 2 times
16: data copyout transfers: 96
device time(us): total=243,594 max=2,558 min=1,751 avg=2,537
: compute region reached 1 time
20: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=9,556 na
elapsed time(us): total=9,605 na
: data region reached 2 times
20: data copyin transfers: 9
device time(us): total=256,886 max=2,709 mine1,841 avg=2,67"
24: data copyout transfers: 48
e GEerB o=l s o

,556 min=1,752 avg=2,536

at runtime

[a1p514. hawk-b624](1003): NV_ACC_TIME=1 ./saxpyc_acc-nodata
SAXPY Tine: 3.984324

Accelerator Kernel Timing data

py_acc-nodata.c
main NVIDIA devicenun-0
tine(us): 1,277,749
: compute region reached 1 tine
16: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=14,513 nax=14,513 min=14,513 avge14,513
elapsed time(us): total=14,561 max=14,561 min=14,561 avg=14,561
: data region reached 2 times
19: data copyout transfers: 192
device time(us): total=487,132 max=
+ compute region reached 1 time
22: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=19,484 max=19,484
elapsed time(us): total=19,518 max=19,518 min=19,518 avg=19,518
: data region reached 2 times
22: data copyin transfers: 192
device time(us): total=513,260 max=2,713 min=993 avg=2,67
24: data copyout transfer:
egicaltineCayspotaL s ke

,559 min=046 avg=2,537

,556 min=044 avg=2,535

@ Fortran: ~ 17 ms for actual calculation and ~ 0.6 s for data transfer

@ C: ~ 35ms for actual calculation and ~ 1.2 s for data transfer

‘Introduction to OpenfICC

21 /45

gk Zhiiersty Pscarch’ Computing

CPU |

m T
[T H

CPU Memory ‘LQ\

[T T

[lerconnect |

N
\/ DRAM

‘Introduction to OpenfICC 28 /45 Settighd Vniisorty Rewarck Computiing

GigaThread™

CPU Memory

[INNRNRRRENRREN
[INRRNNRRENNREN

[T

. Copy input data from CPU memory/NIC to
GPU memory
. Load GPU program and execute

‘Introduction to OpenfICC 28 /45 St Ztiorsity Psearck® Co

LEHIGH

UNIVERSITY

GigaThread™
cPU [[
m
CPU Me 3\ = H
= N = =

op put data fro P emo 0 .
D s | rcomed)
oad program and exe e L2
opy re 0 emo o CP
e O

DRAM

‘Introduction to OpenfICC 28 /45 Sk Zhversty Rsarch’ Compuuting

@ The data construct defines a region of code in which GPU arrays
remain on the GPU and are shared among all kernels in that region

1$acc data [clause]

1$acc parallel loop Arrays used within

. the data region will
1$acc end parallel remain on the GPU
loop until the end of the

. data region.
1$acc end data

ntroduction to OperiCC 30/45

Data Clawses © LEHIGH

copy(list) Allocates memory on GPU and copies data from host to
GPU when entering region and copies data to the host when
exiting region.
copyin(list) Allocates memory on GPU and copies data from host to
GPU when entering region.
copyoul(list) Allocates memory on GPU and copies data to the host when
exiting region.
create(list) Allocates memory on GPU but does not copy.

presenti(list) Data is already present on GPU from another containing data
region.

@ Other clauses: present_or_copy[inlout], present_or_create, deviceptr.

Introduction to Open1CC 31/45 Stk Ztriiersty Pscarck’ Computing

firray Shaping ® LEHIGH

@ Compiler sometime cannot determine size of arrays
@ Must specify explicitly using the data clauses and array "shape"

C #pragma acc data copyin(a[@:size]), copyout(b[s/4:3*s/4])
Fortran !$acc data copyin(a(l:size)), copyout(b(s/4:3*s/4))
@ Note: data clauses can be used on data, parallel or kernels

ntroduction to OperiCC 32 /45

Exercise O LEHIGH

@ Modity the SAXPY code to add a structured data region at the
appropriate spot

@ How does the compiler output the change?

@ Is the code faster now?

@ By how much and how does it compare with the serial and openmp
code?

@ Reprofile the code using NV_ACC_TIME

troduction to OpenICC 33/45 Gt Woonrergy (Gt gy

Tini

® LEHIGH

UNIVERSITY

Tortran Timings

C Timinga

‘Introduction to OpenfICC

[Algorithm Device Time(s) Speedup |
Serial Xeon Gold 5220R 0.504534
OpenMP (12 threads) ~ Xeon Gold 5220R 0.050300 10.03
OpenMP (24 threads) Xeon Gold 5220R 0.026623 18.95
OpenMP (48 threads) ~ Xeon Gold 5220R 0.025263 19.97
OpenACC Tesla T4 0.009601 52.55
CUDA Tesla T4 0.007846 64.30

Serial Xeon Gold 5220R 0.512128
OpenMP (12 threads) ~ Xeon Gold 5220R 0.056454 9.07
OpenMP (24 threads) Xeon Gold 5220R 0.048442 10.57
OpenMP (48 threads) Xeon Gold 5220R 0.026348 19.44
OpenACC Tesla T4 0.019029 26.91
34 /45 Dokl Larionsity. Pcarok’ Borpiating

‘Update Conatruct ® LEHIGH

@ Used to update existing data after it has changed in its corresponding
copy (e.g. upate device copy after host copy changes).

@ Move data from GPU to host, or host to GPU.
@ Data movement can be conditional and asynchronous.
@ Fortran
1$acc update [clause ---]
e C
#pragma acc update [clause ---]

@ Clause

@ host(list)

@ device(list)

@ if(expression)

@ async(expression)

ntroduction to OperiCC 35 /45

OpenflCC private Clause ® LEHIGH

UNIVERSITY

#pragma acc parallel loop #pragma acc parallel loop
for(int i=0;i<M;i++) { private(tmp[0:9])
for(int jj=0;3j<10;jj++) forCint i=0;i<M;i++) {
tmp[j31=33; for(int jj=0;3j<10;jj++)
int sum=0; tmp[331=33;
for(int jj=0;3jj<N;jj++) int sum=0;
sum+=tmp[jj]; for(int jj=0;jj<N;jj++)
A[i]=sum; sum+=tmp[jj];
} A[i]=sum;
}

@ Compiler cannot parallelize because tmp is shared across threads
@ Also useful for live-out scalars

‘Intreduction to OpendICC 36/45 Ldtigh® Vs

® LEHIGH

UNIVERSITY

‘Opent1CC reduction Clause

@ Reduction clause is allowed on parallel and loop constructs

1$acc parallel reduction(operation: var)
structured block with reduction on var
1$acc end parallel

#pragma acc kernels reduction(operation: var) {
structured block with reduction on var

ntroduction to OperiCC 37/45

Exercise ®

@ Parallelize the Pi Calculation code using the Reduction clause

@ Compare timing with serial and openmp code

ntroduction to OperiCC 38/45

LEHIGH

UNIVERSITY

‘Neated 1oops B LEHIGH

@ Currently we have only exposed parallelism on the outer loop
@ We know that both loops can be parallelized
@ Lets look at methods for parallelizing multiple loops

troduction to OpenICC 39/45 Gpts Wy Gt oo

OpenICC collapse Clause B LEHIGH

UNIVERSITY

collapse(n): Applies the associated directive to the following ntightly
nested loops.

#pragma acc parallel
#pragma acc loop

#pragma acc parallel
collapse(2)

#pragma acc loop
for(int i=0; i<N; i++) j for(int 1j=0; ij<NxN;
for(int j=0; j<N; j ij++)
++)

Loops must be tightly nested

ntroduction to OperiCC 40 /45

Exercise O LEHIGH

@ Parallelize the Matmul code using collapse clause

@ Compare timings and GFLOPS with serial and openmp code

T e 4 /4 Gttt Yvvosisy Pk’ Comp

TFurther Speedups B LEHIGH

@ OpenACC gives us more detailed control over parallelization

e Via gang, worker and vector clauses

@ By understanding more about specific GPU on which you’re running,
using these clauses may allow better performance.

@ By understanding bottlenecks in the code via profiling, we can
reorganize the code for even better performance.

ntroduction to OperiCC 42, /45

General Principles: Finding Parallelism in Code & LEHIGH

(Nested) for/do loops are best for parallelization

Large loop counts are best

Iterations of loops must be independent of each other

o To help compiler: restrict keyword (C), independent clause
@ Use subscripted arrays, rather than pointer-indexed arrays

Data regions should avoid wasted bandwidth
o Can use directive to explicitly control sizes
@ Various annoying things can interfere with accelerated regions.

@ Function calls within accelerated region must be inlineable.
e NolO

ntroduction to OperiCC 43 /45

OpenICC: 1 it worth it? B LEHIGH

@ High-level. No involvement of OpenCL, CUDA, etc

@ Single source. No forking off a separate GPU code. Compile the same
program for accelerators or serial, non-GPU programmers can play
along.

@ Efficient. Experience shows very favorable comparison to low-level
implementations of same algorithms.

@ Performance portable. Supports GPU accelreators and co-processors
from multiple vendors, current and future versions.

@ Incremental. Developers can port and tune parts of their application as
resources and profiling dictates. No wholesale rewrite required. Which
can be quick.

troduction to OpenICC /45 Gt Woonrergy (Gt gy

Turther ‘Reading and ‘References ® LEHIGH

OpenACC Programming and Best Practices Guide
OpenACC 2.7 API Reference Card
Parallel programming with OpenACC - Rob Farber (Libraries Link)

OpenACC for Programmers: Concepts and Strategies - Guido
Juckeland and Sunita Chandrasekaran (Libraries Link)

Lecture derived from slides and presentations by
Michael Wolfe, PGI

@ Jeff Larkin, NVIDIA

@ John Urbanic, PSC

Search for OpenACC presentations at the GPU Technology Conference
Website for further study
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

troduction to OpenICC 45 /45 Gt Woonrergy (Gt gy

https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://asa.lib.lehigh.edu/Record/11244523
https://asa.lib.lehigh.edu/Record/11188103
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

