
Introduction to OpenACC
2021 HPC Workshop: Parallel Programming

Alexander B. Pacheco

Research Computing

July 13 - 15, 2021

http://researchcomputing.lehigh.edu

CPU vs GPU

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously
GPU enabled applications

Introduction to OpenACC 2 / 45 Lehigh University Research Computing

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously
GPU enabled applications

Introduction to OpenACC 2 / 45 Lehigh University Research Computing

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously
GPU enabled applications

Introduction to OpenACC 2 / 45 Lehigh University Research Computing

http://www.nvidia.com/object/gpu-applications.html

CPU vs GPU

CPU : consists of a few cores optimized for sequential serial
processing

GPU : has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for
handling multiple tasks simultaneously
GPU enabled applications

Introduction to OpenACC 2 / 45 Lehigh University Research Computing

http://www.nvidia.com/object/gpu-applications.html

GPU Design

Introduction to OpenACC 3 / 45 Lehigh University Research Computing

Hetergenous Programming

Introduction to OpenACC 4 / 45 Lehigh University Research Computing

Accelerate Application for GPU

Introduction to OpenACC 5 / 45 Lehigh University Research Computing

GPU Accelerated Libraries

Introduction to OpenACC 6 / 45 Lehigh University Research Computing

GPU Programming Languages

Introduction to OpenACC 7 / 45 Lehigh University Research Computing

Accelerator Fundamentals

We must expose enough parallelism to saturate the device
Accelerator threads are slower than CPU threads
Accelerators have orders of magnitude more threads

Fine grained parallelism is good
Coarse grained parallelism is bad

Lots of legacy apps have only exposed coarse grain parallelism
i.e. MPI and possibly OpenMP

Introduction to OpenACC 8 / 45 Lehigh University Research Computing

What is OpenACC? I

Open Standard
Easy, Compiler-Driven Approach
portable across host CPUs and
accelerators

Introduction to OpenACC 9 / 45 Lehigh University Research Computing

What is OpenACC? II

History
OpenACC was developed by The Portland Group (PGI), Cray, CAPS
and NVIDIA.
PGI, Cray, and CAPs have spent over 2 years developing and shipping
commercial compilers that use directives to enable GPU acceleration as
core technology.
The small differences between their approaches allowed the formation
of a group to standardize a single directives approach for accelerators
and CPUs.
Full OpenACC 3.1 Specification available online:
https://www.openacc.org/specification

Introduction to OpenACC 10 / 45 Lehigh University Research Computing

https://www.openacc.org/specification

What is OpenACC? III

The Standard for GPU Directives
Simple: Directive are the easy path to accelerate compute intensive

applications
Open: OpenACC is an open GPU directives standard, making GPU

programming straightforwards and portable across parallel
and multi-core processors

Powerful: GPU directives allow complete access to the massive parallel
power of a GPU

Introduction to OpenACC 11 / 45 Lehigh University Research Computing

What is OpenACC?

High Level
Compiler directives to specify parallel regions in C & Fortran

Offload parallel regions
Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogenous programs
Without explicit accelerator intialization
Without explicit data or program transfers between host and accelerator

High Level · · · with low-level access
Programming model allows programmers to start simple
Compiler gives additional guidance

Loop mappings, data location and other performance details

Compatible with other GPU languages and libraries
Interoperate between CUDA C/Fortran and GPU libraries
e.g. CUFFT, CUBLAS, CUSPARSE, etc

Introduction to OpenACC 12 / 45 Lehigh University Research Computing

Why OpenACC

Directives are easy and powerful.
Avoid restructuring of existing code for production applications.
Focus on expressing parallelism.

OpenACC is not GPU Programming

OpenACC is Expressing Parallelism in your code

Introduction to OpenACC 13 / 45 Lehigh University Research Computing

OpenACC Execution Model

Application code runs on the CPU (sequential, shared or distributed
memory)
OpenACC directives indicate that the following block of compute
intensive code needs to be offloaded to the GPU or accelerator.

Introduction to OpenACC 14 / 45 Lehigh University Research Computing

OpenACC Directive Syntax

C/C++
#pragma acc directive [clause [,] clause] ...]
... often followed by a structured code block

Fortran
!$acc directive [clause [,] clause] ...]
...often paired with a matching end directive surrounding a structured code
block:
!$acc end directive

Introduction to OpenACC 15 / 45 Lehigh University Research Computing

OpenACC kernels directive

C: #pragma acc kernels [clause]
Fortran !$acc kernels [clause]

The kernels directive expresses that a region may contain parallelism
and the compiler determines what can be safely parallelized.
The compiler breaks code in the kernel region into a sequence of
kernels for execution on the accelerator device.
What is a kernel? A function that runs in parallel on the GPU.
When a program encounters a kernels contruct, it will launch a
sequence of kernels in order on the device.

Fortran
!$acc kernels
do i = 1, n

x(i) = 1.0
y(i) = 2.0

end do

do i = 1, n
y(i) = y(i) + a ∗ x(i)

end do
!$acc end kernels

C/C++

#pragma acc kernels
{

for (i = 0; i < n; i++){
x[i] = 1.0 ;
y[i] = 2.0 ;

}

for (i = 0; i < n; i++){
y[i] = a∗x[i] + y[i];

}
}

Introduction to OpenACC 16 / 45 Lehigh University Research Computing

OpenACC Parallel Directive

The parallel directive identifies a block of code as having parallelism.
Compiler generates a parallel kernel for that loop.

C: #pragma acc parallel [clauses]
Fortran: !$acc parallel [clauses]

Fortran
!$acc parallel
do i = 1, n

x(i) = 1.0
y(i) = 2.0

end do

do i = 1, n
y(i) = y(i) + a ∗ x(i)

end do
!$acc end parallel

C/C++

#pragma acc parallel
{

for (i = 0; i < n; i++){
x[i] = 1.0 ;
y[i] = 2.0 ;

}

for (i = 0; i < n; i++){
y[i] = a∗x[i] + y[i];

}
}

Introduction to OpenACC 17 / 45 Lehigh University Research Computing

OpenACC Loop Directive

Loops are the most likely targets for Parallelizing.
The Loop directive is used within a parallel or kernels directive
identifying a loop that can be executed on the accelerator device.

C: #pragma acc loop [clauses]
Fortran: !$acc loop [clauses]

The loop directive can be combined with the enclosing parallel or
kernels

C: #pragma acc kernels loop [clauses]
Fortran: !$acc parallel loop [clauses]

The loop directive clauses can be used to optimize the code. This
however requires knowledge of the accelerator device.

Clauses: gang, worker, vector, num_gangs, num_workers

Fortran
!$acc loop
do i = 1, n

y(i) = y(i) + a ∗ x(i)
end do
!$acc end loop

C/C++

#pragma acc loop
for (i = 0; i < n; i++){

y[i] = a∗x[i] + y[i];
}

Introduction to OpenACC 18 / 45 Lehigh University Research Computing

OpenACC parallel vs. kernels

PARALLEL
Requires analysis by
programmer to ensure
safe parallelism.
Straightforward path
from OpenMP

KERNELS
Compiler performs
parallel analysis and
parallelizes what it
believes is safe.
Can cover larger area of
code with single directive
Gives compiler
additional leeway

Both approaches are equally valid and can perform equally well.

Introduction to OpenACC 19 / 45 Lehigh University Research Computing

Exercise

Parallelize the saxpy code by adding OpenACC directives - parallel or
kernels
Compile the code using the following flags to the NVIDIA HPC SDK
compiler
−acc −gpu=cc75
Run the code and compare timing with serial and openmp code

Introduction to OpenACC 20 / 45 Lehigh University Research Computing

SAXPY: Serial

Serial Code
program saxpy

implicit none
integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

x = 1.0d0
y = 2.0d0
a = 2.0d0

call cpu_time(start_time)
do i = 1, n

y(i) = y(i) + a ∗ x(i)
end do
call cpu_time(end_time)

deallocate(x,y)

print ’(a,f8.6)’, ’SAXPY Time: ’, end_time− start_time

end program saxpy

Introduction to OpenACC 21 / 45 Lehigh University Research Computing

SAXPY: OpenMP

OpenMP Code

program saxpy

implicit none
integer :: i,n,omp_get_max_threads
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

!$omp parallel do default(shared) private(i)
do i = 1, n

x(i) = 1.0
y(i) = 1.0

end do
!$omp end parallel do
a = 2.0

call cpu_time(start_time)
!$omp parallel do default(shared) private(i)
do i = 1, n

y(i) = y(i) + a ∗ x(i)
end do
!$omp end parallel do
call cpu_time(end_time)

deallocate(x,y)

print ’(a,i3,2x,a,f8.6)’, ’Threads: ’, omp_get_max_threads(), &
’SAXPY Time: ’, end_time− start_time

end program saxpy

Introduction to OpenACC 22 / 45 Lehigh University Research Computing

SAXPY: OpenACC

OpenACC Code

program saxpy

implicit none
integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n = 200000000
allocate(x(n),y(n))

!$acc parallel loop
do i = 1, n

x(i) = 1.0
y(i) = 1.0

end do
!$acc end parallel loop
a = 2.0

call cpu_time(start_time)
!$acc parallel loop
do i = 1, n

y(i) = y(i) + a ∗ x(i)
end do
!$acc end parallel loop
call cpu_time(end_time)
deallocate(x,y)

print ’(a,f8.6)’, ’SAXPY Time: ’, end_time− start_time

end program saxpy

Introduction to OpenACC 23 / 45 Lehigh University Research Computing

SAXPY: CUDA Fortran

CUDA Fortran Code
module mymodule
contains

attributes(global) subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x−1)∗blockDim%x
if (i<=n) y(i) = a∗x(i)+y(i)

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
integer, parameter :: n = 200000000
real, device :: x_d(n), y_d(n)
real, device :: a_d
real :: start_time, end_time

x_d = 1.0
y_d = 2.0
a_d = 2.0

call cpu_time(start_time)
call saxpy<<<4096, 256>>>(n, a, x_d, y_d)
call cpu_time(end_time)

print ’(a,f15.6,a)’, ’SAXPY Time: ’, end_time− start_time, ’in secs’
end program main

Introduction to OpenACC 24 / 45 Lehigh University Research Computing

SAXPY: Compile & Run I

Compile

[alp514.sol](1018): nvc−acc−gpu=cc75−o saxpyc_acc saxpy_acc.c

Specify the gpu architecture: −gpu=cc75

Get more information about the compilation: −Minfo=accel

[alp514.hawk−b625](1005): nvfortran−acc−gpu=cc75−Minfo=accel−o saxpyf_acc saxpy_acc.f90
saxpy:

12, Generating Tesla code
13, !$acc loop vector(128) ! threadidx%x

12, Generating implicit copyout(x(1:200000000)) [if not already present]
13, Loop is parallelizable
15, Generating Tesla code

16, !$acc loop vector(128) ! threadidx%x
15, Generating implicit copyout(y(1:200000000)) [if not already present]
16, Loop is parallelizable
20, Generating Tesla code

21, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
20, Generating implicit copy(y(1:200000000)) [if not already present]

Generating implicit copyin(x(1:200000000)) [if not already present]

Introduction to OpenACC 25 / 45 Lehigh University Research Computing

SAXPY: Compile & Run II

Fortran Timings
Algorithm Device Time (s) Speedup

Serial Xeon Gold 5220R 0.504534
OpenMP (12 threads) Xeon Gold 5220R 0.050300 10.03
OpenMP (24 threads) Xeon Gold 5220R 0.026623 18.95
OpenMP (48 threads) Xeon Gold 5220R 0.025263 19.97

OpenACC Tesla T4 0.517426 0.98
CUDA Tesla T4 0.007846 64.30

C Timings
Algorithm Device Time (s) Speedup

Serial Xeon Gold 5220R 0.512128
OpenMP (12 threads) Xeon Gold 5220R 0.056454 9.07
OpenMP (24 threads) Xeon Gold 5220R 0.048442 10.57
OpenMP (48 threads) Xeon Gold 5220R 0.026348 19.44

OpenACC Tesla T4 3.434997 0.15

What’s going with OpenACC code?
Why even bother with OpenACC if performance is so bad?

Introduction to OpenACC 26 / 45 Lehigh University Research Computing

Analyzing OpenACC Run Time

The NVIDIA HPC SDK compiler provides automatic instrumentation
when NV_ACC_TIME=1 at runtime

[alp514.hawk-b624](1002): NV_ACC_TIME=1 ./saxpyf_acc-nodata
SAXPY Time: 0.778822

Accelerator Kernel Timing data
/home/alp514/Workshop/2021HPC/parprog/solution/saxpy/saxpy_acc-nodata.f90

saxpy NVIDIA devicenum=0
time(us): 639,595
11: compute region reached 1 time

11: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=7,824 max=7,824 min=7,824 avg=7,824

elapsed time(us): total=7,872 max=7,872 min=7,872 avg=7,872
11: data region reached 2 times

16: data copyout transfers: 96
device time(us): total=243,594 max=2,558 min=1,751 avg=2,537

20: compute region reached 1 time
20: kernel launched 1 time

grid: [65535] block: [128]
device time(us): total=9,556 max=9,556 min=9,556 avg=9,556

elapsed time(us): total=9,605 max=9,605 min=9,605 avg=9,605
20: data region reached 2 times

20: data copyin transfers: 96
device time(us): total=256,886 max=2,709 min=1,841 avg=2,675

24: data copyout transfers: 48
device time(us): total=121,735 max=2,556 min=1,752 avg=2,536

[alp514.hawk-b624](1003): NV_ACC_TIME=1 ./saxpyc_acc-nodata
SAXPY Time: 3.984324

Accelerator Kernel Timing data
/home/alp514/Workshop/2021HPC/parprog/solution/saxpy/saxpy_acc-nodata.c

main NVIDIA devicenum=0
time(us): 1,277,749
16: compute region reached 1 time

16: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=14,513 max=14,513 min=14,513 avg=14,513

elapsed time(us): total=14,561 max=14,561 min=14,561 avg=14,561
16: data region reached 2 times

19: data copyout transfers: 192
device time(us): total=487,132 max=2,559 min=946 avg=2,537

22: compute region reached 1 time
22: kernel launched 1 time

grid: [65535] block: [128]
device time(us): total=19,484 max=19,484 min=19,484 avg=19,484

elapsed time(us): total=19,518 max=19,518 min=19,518 avg=19,518
22: data region reached 2 times

22: data copyin transfers: 192
device time(us): total=513,260 max=2,713 min=993 avg=2,673

24: data copyout transfers: 96
device time(us): total=243,360 max=2,556 min=944 avg=2,535

Fortran: ∼ 17ms for actual calculation and ∼ 0.6 s for data transfer
C: ∼ 35ms for actual calculation and ∼ 1.2 s for data transfer

Introduction to OpenACC 27 / 45 Lehigh University Research Computing

Processing Flow

Introduction to OpenACC 28 / 45 Lehigh University Research Computing

Processing Flow

Introduction to OpenACC 28 / 45 Lehigh University Research Computing

Processing Flow

Introduction to OpenACC 28 / 45 Lehigh University Research Computing

Defining data regions

The data construct defines a region of code in which GPU arrays
remain on the GPU and are shared among all kernels in that region

!$acc data [clause]
!$acc parallel loop

...
!$acc end parallel

loop
...

!$acc end data

}Arrays used within
the data region will
remain on the GPU
until the end of the
data region.

Introduction to OpenACC 30 / 45 Lehigh University Research Computing

Data Clauses

copy(list) Allocates memory on GPU and copies data from host to
GPU when entering region and copies data to the host when
exiting region.

copyin(list) Allocates memory on GPU and copies data from host to
GPU when entering region.

copyout(list) Allocates memory on GPU and copies data to the host when
exiting region.

create(list) Allocates memory on GPU but does not copy.
present(list) Data is already present on GPU from another containing data

region.

Other clauses: present_or_copy[in|out], present_or_create, deviceptr.

Introduction to OpenACC 31 / 45 Lehigh University Research Computing

Array Shaping

Compiler sometime cannot determine size of arrays
Must specify explicitly using the data clauses and array "shape"

C #pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])
Fortran !$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel or kernels

Introduction to OpenACC 32 / 45 Lehigh University Research Computing

Exercise

Modify the SAXPY code to add a structured data region at the
appropriate spot
How does the compiler output the change?
Is the code faster now?
By how much and how does it compare with the serial and openmp
code?
Reprofile the code using NV_ACC_TIME

Introduction to OpenACC 33 / 45 Lehigh University Research Computing

Timings I

Fortran Timings
Algorithm Device Time (s) Speedup

Serial Xeon Gold 5220R 0.504534
OpenMP (12 threads) Xeon Gold 5220R 0.050300 10.03
OpenMP (24 threads) Xeon Gold 5220R 0.026623 18.95
OpenMP (48 threads) Xeon Gold 5220R 0.025263 19.97

OpenACC Tesla T4 0.009601 52.55
CUDA Tesla T4 0.007846 64.30

C Timings
Algorithm Device Time (s) Speedup

Serial Xeon Gold 5220R 0.512128
OpenMP (12 threads) Xeon Gold 5220R 0.056454 9.07
OpenMP (24 threads) Xeon Gold 5220R 0.048442 10.57
OpenMP (48 threads) Xeon Gold 5220R 0.026348 19.44

OpenACC Tesla T4 0.019029 26.91

Introduction to OpenACC 34 / 45 Lehigh University Research Computing

Update Construct

Used to update existing data after it has changed in its corresponding
copy (e.g. upate device copy after host copy changes).
Move data from GPU to host, or host to GPU.
Data movement can be conditional and asynchronous.
Fortran
!$acc update [clause · · ·]
C
#pragma acc update [clause · · ·]
Clause

host(list)
device(list)
if(expression)
async(expression)

Introduction to OpenACC 35 / 45 Lehigh University Research Computing

OpenACC private Clause

#pragma acc parallel loop
for(int i=0;i<M;i++) {

for(int jj=0;jj<10;jj++)
tmp[jj]=jj;

int sum=0;
for(int jj=0;jj<N;jj++)

sum+=tmp[jj];
A[i]=sum;

}

#pragma acc parallel loop
private(tmp[0:9])

for(int i=0;i<M;i++) {
for(int jj=0;jj<10;jj++)

tmp[jj]=jj;
int sum=0;
for(int jj=0;jj<N;jj++)

sum+=tmp[jj];
A[i]=sum;

}

Compiler cannot parallelize because tmp is shared across threads
Also useful for live-out scalars

Introduction to OpenACC 36 / 45 Lehigh University Research Computing

OpenACC reduction Clause I

Reduction clause is allowed on parallel and loop constructs

Fortran

!$acc parallel reduction(operation: var)
structured block with reduction on var

!$acc end parallel

C

#pragma acc kernels reduction(operation: var) {
structured block with reduction on var

}

Introduction to OpenACC 37 / 45 Lehigh University Research Computing

Exercise

Parallelize the Pi Calculation code using the Reduction clause
Compare timing with serial and openmp code

Introduction to OpenACC 38 / 45 Lehigh University Research Computing

Nested Loops

Currently we have only exposed parallelism on the outer loop
We know that both loops can be parallelized
Lets look at methods for parallelizing multiple loops

Introduction to OpenACC 39 / 45 Lehigh University Research Computing

OpenACC collapse Clause

collapse(n): Applies the associated directive to the following ntightly
nested loops.

#pragma acc parallel
#pragma acc loop

collapse(2)
for(int i=0; i<N; i++)

for(int j=0; j<N; j
++)

...

⇒
#pragma acc parallel
#pragma acc loop
for(int ij=0; ij<N∗N;

ij++)
...

Loops must be tightly nested

Introduction to OpenACC 40 / 45 Lehigh University Research Computing

Exercise

Parallelize the Matmul code using collapse clause
Compare timings and GFLOPS with serial and openmp code

Introduction to OpenACC 41 / 45 Lehigh University Research Computing

Further Speedups

OpenACC gives us more detailed control over parallelization
Via gang, worker and vector clauses

By understanding more about specific GPU on which you’re running,
using these clauses may allow better performance.
By understanding bottlenecks in the code via profiling, we can
reorganize the code for even better performance.

Introduction to OpenACC 42 / 45 Lehigh University Research Computing

General Principles: Finding Parallelism in Code

(Nested) for/do loops are best for parallelization
Large loop counts are best
Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause
Use subscripted arrays, rather than pointer-indexed arrays

Data regions should avoid wasted bandwidth
Can use directive to explicitly control sizes

Various annoying things can interfere with accelerated regions.
Function calls within accelerated region must be inlineable.
No IO

Introduction to OpenACC 43 / 45 Lehigh University Research Computing

OpenACC: Is it worth it?

High-level. No involvement of OpenCL, CUDA, etc
Single source. No forking off a separate GPU code. Compile the same
program for accelerators or serial, non-GPU programmers can play
along.
Efficient. Experience shows very favorable comparison to low-level
implementations of same algorithms.
Performance portable. Supports GPU accelreators and co-processors
from multiple vendors, current and future versions.
Incremental. Developers can port and tune parts of their application as
resources and profiling dictates. No wholesale rewrite required. Which
can be quick.

Introduction to OpenACC 44 / 45 Lehigh University Research Computing

Further Reading and References

OpenACC Programming and Best Practices Guide
OpenACC 2.7 API Reference Card
Parallel programming with OpenACC - Rob Farber (Libraries Link)
OpenACC for Programmers: Concepts and Strategies - Guido
Juckeland and Sunita Chandrasekaran (Libraries Link)
Lecture derived from slides and presentations by
Michael Wolfe, PGI
Jeff Larkin, NVIDIA
John Urbanic, PSC
Search for OpenACC presentations at the GPU Technology Conference
Website for further study
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

Introduction to OpenACC 45 / 45 Lehigh University Research Computing

https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://asa.lib.lehigh.edu/Record/11244523
https://asa.lib.lehigh.edu/Record/11188103
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

