
Introduction to Linux

Basic Commands & Environment

Alexander B. Pacheco
LTS Research Computing

http://researchcomputing.lehigh.edu

Outline

1 Introduction

2 Linux File System Heirarchy

3 Basic Commands

4 Environment & Environment Variables

5 Editors

2 / 56

Introduction

What is Linux?

Linux is an operating system that evolved from a kernel created by Linus Torvalds
when he was a student at the University of Helsinki.

It’s meant to be used as an alternative to other operating systems, Windows, Mac OS,
MS-DOS, Solaris and others.

Linux is the most popular OS used in a Supercomputer

OS Family Count Share %

Linux 498 99.6
Unix 2 .4

If you are using a Supercomputer/High Performance Computer for your research, it
will be based on a *nix OS.

It is required/neccessary/mandatory to learn Linux Programming (commands, shell
scripting) if your research involves use of High Performance Computing or
Supercomputing resources.

http://www.top500.org/statistics/list/

November 2016 List

4 / 56

http://www.top500.org/statistics/list/

Where is Linux used?

Linux distributions are tailored to different requirements such as

1 Server
2 Desktop
3 Workstation
4 Routers
5 Embedded devices
6 Mobile devices (Android is a Linux-based OS)

Almost any software that you use on windows has a roughly equivalent software on
Linux, most often multiple equivalent software

e.g. Microsoft Office equivalents are OpenOffice.org, LibreOffice, KOffice

For complete list, visit http:

//wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software

Linux offers you freedom, to choose your desktop environment, software.

5 / 56

http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software

What is a Linux OS, Distro, Desktop Environment?

Many software vendors release their own packaged Linux OS (kernel, applications)
known as distribution

Linux distribution = Linux kernel + GNU system utilities and libraries + Installation
scripts + Management utilities etc.

1 Debian, Ubuntu, Mint
2 Red Hat, Fedora, CentOS
3 Slackware, openSUSE, SLES, SLED
4 Gentoo

Application packages on Linux can be installed from source or from customized
packages

1 deb: Debian based distros e.g. Debian, Ubuntu, Mint
2 rpm: Red Hat based distros, Slackware based distros.

Linux distributions offer a variety of desktop environment.

1 K Desktop Environment (KDE)
2 GNOME
3 Xfce
4 Lightweight X11 Desktop Environment (LXDE)
5 Cinnamon
6 MATE
7 Dynamic Window Manager

6 / 56

Difference between Shell and Command

What is a Shell?

The command line interface is the primary interface to Linux/Unix operating systems.

Shells are how command-line interfaces are implemented in Linux/Unix.

Each shell has varying capabilities and features and the user should choose the shell
that best suits their needs.

The shell is simply an application running on top of the kernel and provides a powerful
interface to the system.

What is a command and how do you use it?

command is a directive to a computer program acting as an interpreter of some kind,
in order to perform a specific task.

command prompt (or just prompt) is a sequence of (one or more) characters used
in a command-line interface to indicate readiness to accept commands.

Its intent is to literally prompt the user to take action.

A prompt usually ends with one of the characters $, %, #, :, > and often includes
other information, such as the path of the current working directory.

7 / 56

Types of Shell

sh : Bourne Shell

� Developed by Stephen Bourne at AT&T Bell Labs

csh : C Shell

� Developed by Bill Joy at University of California, Berkeley

ksh : Korn Shell

� Developed by David Korn at AT&T Bell Labs
� backward-compatible with the Bourne shell and includes many features of the C

shell

bash : Bourne Again Shell

� Developed by Brian Fox for the GNU Project as a free software replacement for
the Bourne shell (sh).

� Default Shell on Linux and Mac OSX
� The name is also descriptive of what it did, bashing together the features of sh,

csh and ksh

tcsh : TENEX C Shell

� Developed by Ken Greer at Carnegie Mellon University
� It is essentially the C shell with programmable command line completion,

command-line editing, and a few other features.

8 / 56

Shell Comparison

Software sh csh ksh bash tcsh

Programming Language 3 3 3 3 3
Shell Variables 3 3 3 3 3
Command alias 7 3 3 3 3

Command history 7 3 3 3 3
Filename completion 7 M M 3 3

Command line editing 7 7 M 3 3
Job control 7 3 3 3 3

3 : Yes

7 : No

M : Yes, not set by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

9 / 56

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Linux File System Heirarchy

Directory Structure

All files are arranged in a hierarchial structure, like an inverted tree.

The top of the hierarchy is traditionally called root (written as a slash /)

/

bin boot dev etc home

user1

Desktop

Documents

Downloads

Public

· · ·

user2 · · ·

lib mnt tmp usr

bin lib local include share

var share

Apps

11 / 56

Relative & Absolute Path

Path means a position in the directory tree.

You can use either the relative path or absolute path

In relative path expression

. (one dot or period) is the current working directory

.. (two dots or periods) is one directory up
You can combine . and .. to navigate the file system hierarchy.
the path is not defined uniquely and does depend on the current path.
../../tmp is unique only if your current working directory is your home directory.

In absolute path expression

the path is defined uniquely and does not depend on the current path
/tmp is unique since /tmp is the abolute path

12 / 56

Basic Commands

How to get more information with Linux

1 man shows the manual for a command or program.

The manual is a file that shows you how to use the command and list the
different options for the command in question.
Usage: man [command]

Example: man ls Enter

2 info similar to man, with a more robust structure for linking pages together.

Usage: info [command]

Example: info man Enter

To quit from man or info, type q

3 apropos shows you all of the man pages that may shed some light on a certain
command.

Usage: appropos [keyword]

Example: appropos editor Enter

4 echo is used to print information to screen

Usage: echo [arguments]

Example: echo Welcome to LTS Seminar on Linux Commands

14 / 56

Basic Commands I

1 pwd

prints the current working directory.

Usage: pwd

Example: pwd Enter

2 cd

allows one to change directory

argument is the path (relative or absolute) of the directory you want to change to

Usage: cd [destination]

Example: cd /tmp Enter

The default destination directory is your home directory.

i.e. If you type cd Enter , you will end up in your home directory.

If you want to go back to the previous directory, type cd - Enter

15 / 56

Basic Commands II

3 ls

lists the contents of a directory.

Usage: ls <options> <path>

Example: ls Enter

The current working directory is the default path.

To list contents of another directory specify the path, relative or absolute

Common options to the ls command

-l: show long listing format

-a: show hidden files

-r: reverse order while sorting

-t: show modification times

-h: use file sizes in SI units (bytes, kilobytes, megabytes etc) default is bytes

16 / 56

Basic Commands III

4 alias

create a shortcut to another command or name to execute a long string.

Usage

bash/sh/ksh: alias <name>="<actual command>"

csh/tcsh: alias <name> "<actual command>"

Example:

bash/sh/ksh: alias lla="ls -al"

csh/tcsh: alias lls "ls -al"

The alias command is very useful tool to create shortcuts to other commands
and is most often used by paranoid users to prevent accidental deletion of files.

unalias is a command to remove an alias.

Usage: unalias <name>

Example: unalias lla will remove the shortcut to ls -al

17 / 56

Basic Commands IV

5 mkdir

create a directory

Usage: mkdir <options> <directoryname>

Example: mkdir -p $HOME/test/testagain Enter

By default, the directory is created in the current directory or in a path relative
to the current directory

The -p option will create intermediate directories if they do not exist.

e.g. If the directory test does not exist in $HOME, then

mkdir $HOME/test/testagain will fail.

The -p option will create the test directory within $HOME and then create
testagain within the newly created test directory

18 / 56

Basic Commands V

6 cp

copy a file or directory

Usage: cp <options> <source(s)> <destination>

Example: cp $HOME/.bashrc ../../tmp Enter

Common options to cp command:
-r: copy recursively, required when copying directories.

-i: prompt if file exists on destination and can be copied over.
-p: preserve file access times, ownership etc.
If there are more than one source files, then the destination (i.e. last entry or file)
must be a directory.
If the source(s) is(are) a file(s) and the destination is a directory, then the file(s)
will be copied into the directory

e.g. cp file1 file2 dir1 Enter

dir1 will contain the files file1 and file2

If dir1 is a file, then the above command will fail

19 / 56

Basic Commands VI

7 rm

removes or deletes a file or directory

Usage: rm <options> <file or directory>

Example: rm $HOME/tmpfile Enter

Common options to rm command:

-r: remove recursively, required when copying directories.

-i: prompt if file really needs to be deleted

-f: force remove overrides the -i option

be careful while using the rm command, deleted
files cannot be recovered
To be on the safe side, create an alias to the rm command and only use the -f

option only if you are sure you want to delete the file or directory

sh/ksh/bash: alias rm="rm -i"

csh/tcsh : alias rm ’rm -i’

delete empty directories using the rmdir command.

20 / 56

Basic Commands VII

8 mv

moves or renames a file or directory

Usage: mv <options> <source> <destination>

Example: mv test test1

If there are more than one source file, then the last file is the destination and
must be a directory.

Use the -i option to prompt if a file or directory will be overwritten.

If the source(s) is(are) a file(s) and the destination is a directory, then the file(s)
will be copied into the directory.

e.g. mv file1 file2 dir1 Enter

dir1 will contain the files file1 and file2

If dir1 is a file, then the above command will fail

21 / 56

Pager Commands

To display a file to screen, *nix provides three commands at your disposal

1 cat: Show contents of a file.

2 more: Display contents one page at a time.

3 less: Display contents one page at a time but allow forward/backward scrolling

Usage: cat/more/less <options> <filename>

Example: cat .bashrc

To scroll forward in more or less, use the space bar, CNTRL-f/d or ”Page Down” key.

To scroll backwards in less use CNTRL-b/u or ”Page Up”.

To quit from more or less, use q

A rarely used command, tac does the opposite of cat i.e. show contents of a file in
reverse.

22 / 56

Other Commands I

passwd: change password

chsh: change default shell

df: report disk space usage by filesystem

du: estimate file space usage - space used under a particular directory or files on
a file system.

sudo: run command as root (only if you have access)

mount: mount file system (root only)

umount: unmount file system (root only)

shutdown: reboot or turn off machine (root only)

top: Produces an ordered list of running processes

htop: An interactive process viewer for Linux ((not installed by default))

free: Display amount of free and used memory in the system

file: Determine file type

touch: change file timestamps or create file if not present

date: display or set date and time

find : Find a file find /dir/to/search -name file-to-search

23 / 56

Other Commands II

wc: Count words, lines and characters in a file wc -l .bashrc

grep: Find patterns in a file grep alias .bashrc

awk: File processing and report generating awk ’{print $1}’ file1

sed: Stream Editor sed ’s/home/HOME/g’ .bashrc

set: manipulate environment variables set -o emacs

ln: Link a file to another file ln -s file1 file2

head: Display first lines of a file head file1

tail: Display last lines of a file tail file1

By default, 10 lines are displayed in head and tail

To display more lines, say x, use the flag -n x where

Adding -f flag to tail will wait for additional data to be appended to the
file.

wait: wait until all backgrounded jobs have completed

which: shows the full path of (shell) commands

whatis: display manual page descriptions

24 / 56

Other Commands III

!name: rerun previously executed command with the same arguments as before,
name <args>.

Note that you do not always have to type the full command name, just the
minimum unique characters (no spaces) of name need to be entered.

If you had entered two commands name <args> and nbme <args>, then to
rerun name, use the command !na Enter .

history: display a list of last executed commands. Optional argument m will list the
last m commands.

All previously executed commands will be listed with a number n.

To rerun a command from history which has number n, run the command
!n Enter

To learn more about these commands, type man command or info command on the command
prompt

25 / 56

Filename Completion

Filename or Tab completion is a default feature in bash and tcsh.

It allows to a user to automatically complete the file, directory or command name you
are typing upto the next unique characters using the TAB key.

Example: Your home directory contains directories Desktop, Documents and Downloads.

If you enter the command ls D −−→−−→ , you will be prompted with above the three

directory names.

[user@localhost ~]$ ls D −−→−−→
Desktop/ Documents/ Downloads/

[user@localhost ~]$ ls Do −−→−−→
Documents/ Downloads/
[user@localhost ~]$ ls Do

26 / 56

Wildcards

*nix shells have the ability to refer to more than one file by name using special
characters called Wildcards.

Wildcards can be used with *nix utilities such as ls, cp, mv, rm, tar and g(un)zip.

? match a single character

* match zero or more characters

[] match list of characters in the list specified

[!] match characters not in the list specified

Examples:

1 ls */*
list contents of all subdirectories

2 cp [a-z]* lower/
copy all files with names that begin with lowercase letters to a directory called lower

3 cp [!a-z]* upper digit/

copy all files with names that do not begin with lowercase letters to a directory called

lower

27 / 56

How to Login to Remote Systems?

Most Linux/UNIX systems allow secure shell connections from other systems.

e.g. You need to login using ssh to the LTS HPC clusters.

Usage: ssh <username>@<remote host>

Example: ssh alp514@polaris.cc.lehigh.edu

If your local machine is a UNIX-like system i.e. Linux, Mac OSX, BSD, AIX, Solaris
etc and your username on the local machine is the same as that of the remote machine,
then

you can omit the <username>@ part of the argument.

i.e. ssh <remote host>

If the remote machine is listening to ssh connections on a non default port (i.e.
different from port 22) add -p <port number> option

i.e. ssh -p <port number> <user>@<remote host>

If you need to forward the display of an application from the remote system to your
local system, add the -X option to ssh

Example: ssh -X alp514@ssh.cc.lehigh.edu

28 / 56

File Transfer between two systems I

scp is a command to copy files/directories between two *nix hosts over the SSH
protocol.

Usage: scp <options> <user>@<host>:/path/to/source/file \
<user>@<host>:/path/to/destination/file/or/directory

e.g. You want to copy files between Polaris Cluster and your Linux Desktop/Laptop

scp alp514@polaris.cc.lehigh.edu:/home/alp514/octave-tutorial.tar.gz .

scp -r Public apacheco@polaris.cc.lehigh.edu:∼/
You can omit the <user>@ part of the argument if the username is the same on both
systems.

You can omit the <user>@<host>: for your local machine.

Common options are -r and -p, same meaning as cp.

add -P <port number> option for non default ports.

29 / 56

File Transfer between two systems II

rsync is another utility that can be used to copy files locally and remotely.

Usage: rsync <option> <source> <destination>

It is famous for its delta-transfer algorithm

i.e. sending only the differences between the source files and the existing files in the
destination.

Rsync is widely used for backups and mirroring and as an improved copy command for
everyday use.

Common options:

-a: archive mode

-r: recurse into directories

-v: increase verbosity

-z: compress file data during the transfer

-u: skip files that are newer on the receiver

-t: preserve modification times

-n: dry-run, perform a trial run with no changes made

Example: rsync -avtzu corona.cc.lehigh.edu:∼/* .

If you are a user on National Supercomputing resource such as XSEDE, NERSC, OSG,
etc, there are other transfer tools such as globus toolkit (gridftp) and bbcp which
provide higher bandwidth and parallel file transfers.

30 / 56

Compressing and Archiving Files I

Quite often you need to compress and uncompress files to reduce storage usage or
bandwidth while transferring files.

*nix systems have built-in utilities to compress/uncompress files

Compress
gzip, zip, bzip2

gzip README Enter

Uncompress
gunzip, unzip, bunzip2

gunzip README.gz Enter

Gzipped files have an extension .gz,.z or .Z

zipped files have an extension .Zip or .zip

Bzipped files have an extension .bz2, .bz

To compress/uncompress files recursively, use the -r option.

To overwrite files while compressing/uncompressing, use the -f option.

31 / 56

Compressing and Archiving Files II

*nix provides the tar package to create and manipulate streaming archive of files.

Usage: tar <options> <file> <patterns>

file is the name of the tar archive file, usually with extension .tar

patterns are pathnames for files/directories being archived

Common options

-c: create an archive file

-x: extract to disk from archive

-t: list contents of archive

-z: filter the archive through gzip (adds/requires extension .gz)

-j: filter the archive through bzip2 (adds/requires extension .bz2)

-v: verbosely list files processed

-f: read the archive from or write the archive to the specified file

e.g. tar -cvzf myhome.tar.gz ${HOME}/*
This becomes useful for creating a backup of your files and directories that you can
store at some storage facility e.g. external disk

32 / 56

I/O Redirection

There are three file descriptors for I/O streams

STDIN : Standard Input
STDOUT : Standard Output
STDERR : Standard Error

1 represents STDOUT and 2 represents STDERR

I/O redirection allows users to connect applications

< : connects a file to STDIN of an application
> : connects STDOUT of an application to a file

>> : connects STDOUT of an application by appending to a file
| : connects the STDOUT of an application to STDIN of another application.

Examples:

1 write STDOUT to file: ls -l > ls-l.out
2 write STDERR to file: ls -l 2> ls-l.err
3 write STDOUT to STDERR: ls -l 1>&2
4 write STDERR to STDOUT: ls -l 2>&1
5 send STDOUT as STDIN: ls -l | wc -l

33 / 56

File Permissions I

Since *NIX OS’s are designed for multi user environment, it is necessary to restrict
access of files to other users on the system.

In *NIX OS’s, you have three types of file permissions

1 read (r)
2 write (w)
3 execute (x)

for three types of users

1 user (u)
2 group (g)
3 world (o) i.e. everyone else who has access to the system

34 / 56

File Permissions II

[user@localhost ~]$ ls -l
total 44
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Desktop
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Documents
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Downloads
-rwxr-xr-x. 1 user user 32 Sep 11 11:57 hello
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Music
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Pictures
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Public
-rw-rw-r--. 1 user user 3047 Sep 11 11:48 README
drwxr-xr-x. 1 root root 4216 Jan 22 16:17 Shared
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Templates
lrwxrwxrwx. 1 user user 5 Jan 23 08:17 test -> hello
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Videos
[user@localhost ~]$

The first character signifies the type of the file

d for directory

l for symbolic link

- for normal file

The next three characters of first triad signifies what the owner can do

The second triad signifies what group member can do

35 / 56

File Permissions III

The third triad signifies what everyone else can do

d rwx︸︷︷︸
u

g︷ ︸︸ ︷
r − x r − x︸ ︷︷ ︸

o

Read carries a weight of 4

Write carries a weight of 2

Execute carries a weight of 1

The weights are added to give a value of 7 (rwx), 6(rw), 5(rx) or 3(wx) permissions.

chmod is a *NIX command to change permissions on a file

Usage: chmod <option> <permissions> <file or directory name>

To give user rwx, group rx and world x permission, the command is

chmod 751 filename

36 / 56

File Permissions IV

Instead of using numerical permissions you can also use symbolic mode

u/g/o or a user/group/world or all i.e. ugo

+/- Add/remove permission

r/w/x read/write/execute

Give everyone execute permission:

chmod a+x hello.sh

chmod ugo+x hello.sh

Remove group and world read & write permission:

chmod go-rw hello.sh

To change permissions recursively in a directory, use the option -R (can also be used in
the following two commands)

chmod -R 755 ${HOME}/*
What is the permission on ${HOME}?

37 / 56

File Permissions V

The chgrp command is used to change the group ownership between two groups that
you are a member of.

Usage: chgrp <option> <new group> <file or directory name>

You can use the chgrp command to change the ownership of your files from the users

group to abc group.

Example: chgrp -R abc collaborative-work-dir

The chown command is used to change the owner of a file.

chown can only be executed by the superuser, to prevent users simply changing
ownership of files that aren’t theirs to access.

Usage: chown <new owner>[:<group name>] <file or directory name>

38 / 56

Processes and Jobs I

A process is an executing program identified by a unique PID

F To see information about your running processes and their PID and status,

ps Enter

A process may be in foreground, background or be suspended.

Processes running in foreground, the command prompt is not returned until the
current process has finished executing.

If a job takes a long time to run, put the job in background in order to obtain the
command prompt back to do some other useful work

There are two ways to send a job into the background:

1 Add an ampersand & to the end of your command to send it into background
directly.
firefox & Enter

2 First suspend the job using Ctrl Z and then type bg at the command prompt.
3 If you type fg then the job will run in foreground and you will lose the command

prompt.

39 / 56

Processes and Jobs II

When a process is running, background or suspended, it will be entered onto a list
along with a job number (not PID)

jobs Enter

To restart a suspended job in foreground or background, type

fg %jobnumber where jobnumber is a number greater than 1, or,

bg %jobnumber

To kill or terminate a process:

1 Job running in foreground: enter Ctrl C

2 Job whose PID you know
kill PID Enter

3 Job whose jobnumber you know (from jobs command)
kill %jobnumber Enter

The kill command can take options specific to UNIX signals

The most common option is -9 for the SIGKILL signal

pstree: display a tree of processes

pkill: kill process by its name, user name, group name, terminal, UID, EUID, and
GID.

40 / 56

Environment & Environment Variables

Start Up Scripts

When you login to a *NIX computer, shell scripts are automatically loaded depending
on your default shell

sh,ksh

1 /etc/profile
2 $HOME/.profile

bash

1 /etc/profile, login terminal only
2 /etc/bashrc or /etc/bash/bashrc
3 $HOME/.bash profile, login terminal only
4 $HOME/.bashrc

csh,tcsh

1 /etc/csh.cshrc
2 $HOME/.tcshrc
3 $HOME/.cshrc if .tcshrc is not present

The .bashrc, .tcshrc, .cshrc, .bash profile are script files where users can define
their own aliases, environment variables, modify paths etc.

e.g. the alias command covered earlier can be put in one of these script files depending
on your shell

42 / 56

Examples I

.bashrc

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

User specific aliases and functions

alias c="clear"

alias rm="/bin/rm -i"

alias psu="ps -u apacheco"

alias em="emacs -nw"

alias ll="ls -lF"

alias la="ls -al"

export PATH=/home/apacheco/bin:${PATH}

export g09root =/home/apacheco/Software/Gaussian09

export GAUSS_SCRDIR =/home/apacheco/Software/scratch

source $g09root/g09/bsd/g09.profile

export TEXINPUTS =.:/ usr/share/texmf //:/ home/apacheco/LaTeX //:${TEXINPUTS}

export BIBINPUTS =.:/ home/apacheco/TeX//:${BIBINPUTS}

43 / 56

Examples II

.tcshrc

User specific aliases and functions

alias c clear

alias rm "/bin/rm -i"

alias psu "ps -u apacheco"

alias em "emacs -nw"

alias ll "ls -lF"

alias la "ls -al"

setenv PATH "/home/apacheco/bin:${PATH}"

setenv g09root "/home/apacheco/Software/Gaussian09"

setenv GAUSS_SCRDIR "/home/apacheco/Software/scratch"

source $g09root/g09/bsd/g09.login

setenv TEXINPUTS ".:/usr/share/texmf //:/ home/apacheco/LaTeX //:${TEXINPUTS}"

setenv BIBINPUTS ".:/ home/apacheco/TeX //:${BIBINPUTS}"

44 / 56

Variables I

*nix also permits the use of variables, similar to any programming language such as C,
C++, Fortran etc

A variable is a named object that contains data used by one or more applications.

There are two types of variables, Environment and User Defined and can contain a
number, character or a string of characters.

Environment Variables provides a simple way to share configuration settings between
multiple applications and processes in Linux.

By Convention, enviromental variables are often named using all uppercase letters

e.g. PATH, LD LIBRARY PATH, LD INCLUDE PATH, TEXINPUTS, etc

To reference a variable (environment or user defined) prepend $ to the name of the
variable

e.g. $PATH, $LD LIBRARY PATH

45 / 56

Variables II

The command printenv list the current environmental variables.

F Type printenv on your command prompt to list all environment variables in your
current session.

The command env is used to either print a list of environment variables or run another
utility in an altered environment without having to modify the currently existing
environment.

F Type env SHELL=/bin/tcsh xterm to start an xterm session in tcsh

� To execute the above command successfully, you need to be in GUI mode on the
virtual OS or logged into a remote systems with X-Forwarding enabled.

46 / 56

Variables III

PATH: A list of directory paths.

HOME: indicate where a user’s home directory is located in the file system.

PWD: contains path to current working directory.

OLDPWD: contains path to previous working directory.

TERM: specifies the type of computer terminal or terminal emulator being used

SHELL: contains name of the running, interactive shell.

PS1: default command prompt

PS2: secondary command prompt

LD LIBRARY PATH: colon-separated set of directories where libraries should be searched
for first

HOSTNAME: The systems host name

USER: Current logged in user’s name

DISPLAY: Network name of the X11 display to connect to, if available.

47 / 56

Variables IV

You can edit the environment variables.

Command to do this depends on the shell

F To add your bin directory to the PATH variable

sh/ksh/bash: export PATH=${HOME}/bin:${PATH}
csh/tcsh: setenv PATH ${HOME}/bin:${PATH}

F Note the syntax for the above commands

F sh/ksh/bash: no spaces except between export and PATH

F csh,tcsh: no = sign, just a space between PATH and the absolute path

F all shells: colon(:) to separate different paths and the variable that is appended to

Yes, the order matters. If you have a customized version of a software say perl in
your home directory, if you append the perl path to PATH at the end, your program will
use the system wide perl not your locally installed version.

48 / 56

Variables V

Rules for Variable Names

1 Variable names must start with a letter or underscore
2 Number can be used anywhere else
3 DO NOT USE special characters such as @, #, %, $
4 Case sensitive
5 Examples

Allowed: VARIABLE, VAR1234able, var name, VAR
Not Allowed: 1VARIABLE, %NAME, $myvar, VAR@NAME

Assigning value to a variable

Type sh,ksh,bash csh,tcsh

Shell name=value set name = value
Environment export name=value setenv name value

sh,ksh,bash THERE IS NO SPACE ON EITHER SIDE OF =

csh,tcsh space on either side of = is allowed for the set command

csh,tcsh There is no = in the setenv command

49 / 56

Editors

File Editing

The two most commonly used editors on Linux/Unix systems are:

1 vi or vim (vi improved)
2 emacs

vi/vim is installed by default on Linux/Unix systems and has only a command line
interface (CLI).

emacs has both a CLI and a graphical user interface (GUI).

� If emacs GUI is installed then use emacs -nw to open file in console.

Other editors that you may come across on *nix systems

kate: default editor for KDE.

gedit: default text editor for GNOME desktop environment.

gvim: GUI version of vim

pico: console based plain text editor

nano: GNU.org clone of pico

kwrite: editor by KDE.

51 / 56

Editor Cheatsheets I

vi/vim and emacs are the two most popular *nix file editors.

Which one to use is up to you.

vi/vim has two modes:

1 Editing mode
2 Command mode

emacs has only one mode as in any editor that you use.

Insert/Appending Text vi
insert at cursor i

insert at beginning of line I

append after cursor a

append at end of line A

newline after cursor in insert mode o

newline before cursor in insert mode O

append at end of line ea

exit insert mode ESC

52 / 56

Editor Cheatsheets II

Cursor Movement vi emacs
move left h Ctrl -b

move down j Ctrl -n

move up k Ctrl -p

move right l Ctrl -f

jump to begining of line ^ Ctrl -a

jump to end of line $ Ctrl -e

goto line n nG Esc x goto-line Enter n

goto top of file 1G Esc <

goto end of file G Esc >

move one page up Ctrl -u Esc v

move one page down Ctrl -d Ctrl -v

File Manipulation vi emacs
edit/open file file :e file Ctrl -x Ctrl -f file

insert file file :r file Ctrl -x i file

save file :w Ctrl -x Ctrl -s

save file and exit :wq, ZZ (if file exists)
quit :q Ctrl -x Ctrl -c

quit without saving :q!

53 / 56

Editor Cheatsheets III

Text Manipulation vi emacs
delete a line dd Ctrl -a Ctrl -k

delete n lines ndd Ctrl -a Esc n Ctrl -k

paste deleted line after cursor p Ctrl -y

paste deleted line before curosr P
undo edit u Ctrl - or Ctrl -x u

delete cursor to end of line D Ctrl -k

search forward for patt \patt Ctrl -s patt

search backward for patt ?patt Ctrl -r patt

search again forward (backward) n Ctrl -s(r)

replace a character r
join next line to current J

change a line cc
change a word cw

change to end of line c$
delete a character x Ctrl -d

delete a word dw Esc -d

Window Management vi emacs
split window horizontally :split or Ctrl -w s Ctrl -x 2

split window vertically :vsplit or Ctrl -w v Ctrl -x 3

switch windows Ctrl -w w Ctrl -x o

54 / 56

Editor Cheatsheets IV

Do a google search for more detailed cheatsheets

vi https://www.google.com/search?q=vi+cheatsheet

emacs https://www.google.com/search?q=emacs+cheatsheet

More on the set -o command

The set -o command can be used to change the command line editor mode among
other things (Do man set Enter to find out more)

1 set -o emacs: emacs style in-line editor for command entry, this is the default
2 set -o vi: vi style in-line editor for command entry.

55 / 56

https://www.google.com/search?q=vi+cheatsheet
https://www.google.com/search?q=emacs+cheatsheet

The End
Any Questions?

Subscribe to Lehigh Linux Google Group via email to

lehigh-linux-list+subscribe@lehigh.edu

56 / 56

http://groups.google.com/a/lehigh.edu/group/lehigh-linux-list/
lehigh-linux-list+subscribe@lehigh.edu

	Introduction
	Linux File System Heirarchy
	Basic Commands
	Environment & Environment Variables
	Editors

