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Arrays



@ Arrays (or matrices) hold a collection of different values at the same time.
o Individual elements are accessed by subscripting the array.

@ A 10 element array is visualized as

[1[2[3]---[8[9]10]
while a 4x3 array as
Dimension 2
1) 1,2) 1,3)
K5 (3] (22) (23)
n
g (3.1) (32 (3.3)
(=}
41) 4.2) 43)

@ Each array has a type and each element of holds a value of that type.




Array Declarations

@ The dimension attribute declares arrays.
o Lkage:dimension(1ower_bound:upper_bound)
Lower bounds of one (1:) can be omitted

o Examples:
integer, dimension(1:106) :: atomic_number
real, dimension(3,0:5,-10:10) :: values
character (len=3) ,dimension(12) :: months

@ Alternative form for array declaration
integer :: days_per_week(7), months_per_ year (12)
real :: grid(0:100,-100:0,-50:50)
complex :: psi (100,100
@ Another alternative form which can be very confusing for readers

integer, dimension(7) :: days_per_week, months_per_year (12)




Array Terminology

real :: a(0:20), b(3,0:5,-10:10)
Rank: Number of dimensions.
a has rank 1 and b has rank 3
Bounds: upper and lower limits of each dimension of the array.
a has bounds 0:20 and v has bounds 1:3, 0:5 and -10:10
Extent: Number of element in each dimension
a has extent 21 and b has extents 3,6 and 21
Size: Total number of elements.
a has size 21 and b has 30
Shape: The shape of an array is its rank and extent
a has shape 21 and b has shape (3,6,21)

@ Arrays are conformable if they share a shape.
@ The bounds do not have to be the same

c(4:6)= d(1:3)

P



Array Visualization

@ Define arrays a, b, c and d as follows

real,dimension(15) :: a

real,dimension(-4:0,0:2) :: b

real,dimension(5,3) :: c

real,dimension(4:8,2:4) :: d

[a@® [ a@ | ~.. ~"a@a) [ a@s) |

8(40) I 4 R 5(42)
c(1,1) C(1,3)
D(4,2) D(4,4)
B(0,0) B(0,2)
C(5,1) > * C(5,3)
D(8,2) D(8,4)




Array Conformance

@ Array or sub-arrays must conform with all other objects in an expression
@ a scalar conforms to an array of any shape with the same value for every element
c = 1.0isthesameasc(:,:)= 1.0
© (two array references must conform in their shape.

valid

invalid
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Array Element Ordering

@ Fortran is a column major form i.e. elements are added to the columns
seqeuntially. This ordering can be changed using the reshape intrinsic.

m N




Array Constructors I

Used to give arrays or sections of arrays specific values

implicit none

integer :: i

integer, dimension(10) :: ints
character (len=5) ,dimension(3) :: colors
real, dimension (4) :: height
height (/5.10, 5.4, 6.3, 4.5 /)
colors (/ ’

= 7 /)
ints = (/ 30, (i =1, 8), 40 /)

constructors and array sections must conform.

ints = (/ 30, (i = 1, 10), 40/) isinvalid

strings should be padded so that character variables have correct length.
use reshape intrinsic for arrays for higher ranks

(i = 1, 8) is an implied do.

You can also specify a stride in the implied do.

ints = (/ 30, (i =1, 16, 2), 40/)

There should be no space between / and ( or )



Array Constructors II

@ reshape (source, shape, pad, order) constructs an array with a specified
shape shape starting from the elements in a given array source.

@ If pad is not included then the size of source has to be at least product (shape).
@ If pad is included it has to have the same type as source.

o If order is included, it has to be an integer array with the same shape as shape
and the values must be a permutation of (1,2,3,...,N), where N (max value is 7) is
the number of elements in shape.

0 0 0 rcell = reshape( (/ & rcell = reshape( (/ &
0 a a 0.d0, 0.d0, a, a, & 0.d0, 0.d0, 0.d0 &
( a 0 a ) 0.d0, a, 0.d0, a, & 0.d0, a , a &
a a 0 0.d0, a, a, 0.d0 & a, 0.d0, a &
/), (/4,3/) ) a, a, 0.d0 &
(

/), (/4,3/),0rder=(/2,1/)

)

@ In Fortran, for a multidimensional array, the first dimension has the fastest index
while the last dimension has the slowest index i.e. memory locations are
continuous for the last dimension.




Array Constructors III

@ The order statement allows the programmer to change this order. The last
example above sets the memory location order which is consistent to that in
C/C++.

@ Arrays can be initialized as follows during variable declaration

integer, dimension(4) :: imatrix = (/ 2, 4, 6, 8/)
character (len=+) ,dimension(3) :: colors = (/ o , /)}

! A1l strings must be the same length}

real, dimension(4) :: height = (/5.10, 5.4, 6.3, 4.5/)

integer, dimension(10) :: ints = (/ 30, (1 = 1, 8), 40/)

real, dimension(4,3), parameter :: rcell = reshape( (/0.d0, 0.d40, 0.d0, 0.d0,\&

a, a, a,0.d0, a, a, a, 0.d0 /), (/4,3/),0order=(/2,1/))




Array Syntax

@ Arrays can be treated as a single variable when performing operations
@ set whole array to a constant: a = 0.0
© can use intrinsic operators between conformable arrays (or sections)
b=cx d+ bx*2
this is equivalent to

b(-4,0) = c(1,1) = d(4,2) + b(-4,0)**2
b(-3,0) = c(2,1) * d(5,2) + b(-3,0)**2
b(-4,0) c(l,1) = d(4,2) + b(-4,0)*%2
b(-4,1) = c(1,2) » d(4,3) + b(-4,1)*%2
b(-3,2) = c(4,3) » d(7,4) + b(-3,2)**2
b(-4,2) = c(5,3) » d(8,4) + b(-4,2)%*x2

© clemental intrinsic functions can be used: b = sin(c)+ cos (d)
© All operations/functions are applied element by element
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Array Sections I

real, dimension(6:6):: a
@ a(1:3,1:3)= a(l:6:2,2:6:2) and -
a(l:3,1:3)= 1.0 are valid |
@ a(2:5,5)= a(2:5,1:6:2) and | |
a(2:5,1:6:2)= a(l:6:2,2:6:2) arenot
@ a(2:5,5) isa ID section while a1313) a(1:6:2,2:6:2)
a(2:5,1:6:2) isa2D section
a(2:5,5) or a(2:5,5:5) a(2:5,1:6:2)

@ The general form for specifying sub-arrays or sections is
[<boundl>]:[<bound2>][:<stride>]

@ The section starts at <boundl> and ends at or before <bound2>.

@ <stride> is the increment by which the locations are selected, by default stride=1

@ <boundl>, <bound2>, <stride> must all be scalar integer expressions.




Array Sections II

real, dimension(1:20) :: a

integer :: m,n,k
a(:) the whole array
a(3:9) elements 3 to 9 in increments of 1
a(3:9:1) as above
a(m:n) elements m through n
a(m:n:k) elements m through n in increments of k
a(l5:3:-2) elements 15 through 3 in increments of -2
a(ls5:3) zero size array
a(m:) elements m through 20, default upper bound
a(:n) elements 1, default lower bound through n
a(::2) all elements from lower to upper bound in increments of 2
a(m:m) 1 element section
a (m) array element not a section

are valid sections.




Array I/O 1

real,dimension(4,4):: a
@ Arrays are printed in the order that they appear in memory

print x, a

would produce on output

a(l,1),a(2,1),a(3,1),a(4,1),a(1,2),a(2,2),---,a(3,4),a4,4)

read *, a

would read from input and assign array elements in the same order as above
@ The order of array I/O can be changed using intrinsic functions such as

reshape, transpose OI cshift.




Array I/O I

o Example: consider a 3x3 matrix

@ The following print statements

print »,
print x,
print =,
print x,
print »,

1147

21518

31619
,a(3,3)
ra(:,2)
,a(:3,:2)

ra

,transpose (a)

@ would produce the following output

array element
array section
sub—array

whole array
array transpose

[ T e o)

NN Ol
~ W W o
N D
o o U1

0 o O

w I

o

O O



Array Intrinsic Functions I

size(x[,n]) The size of x (along the n'" dimension, optional)

shape(x) The shape of x
Ibound(x[,n]) The lower bound of x

ubound(x[,n]) The upper bound of x
minval(x) The minimum of all values of x
maxval(x) The maximum of all values of x
minloc(x) The indices of the minimum value of x

maxloc(x) The indices of the maximum value of x
sum(x[,n]) The sum of all elements of x (along the nt" dimension, optional)

sum(x) = E”k Li,5,k,e




Array Intrinsic Functions II

product(x[,n]) The product of all elements of x (along the n*" dimension, optional)
prod(x) = H”k L35k,
transpose(x) Transpose of array x: ; j = ;. ;
dot_product(x,y) Dot Product of arrays x and y: ), a; * y;

matmul(x,y) Matrix Multiplication of arrays x and y which can be 1 or 2
dimensional arrays: z; ; = Zk Tik * Yk

conjg(x) Returns the conjugate of x: @ + b = a — b

cshift(ARRAY, SHIFT, dim) perform a circular shift by SHIFT positions to the left
on array ARRAY along the dim*® dimension




Allocatable Arrays [

o At compile time we may not know the size an array needs to be

@ We may want to change the problem size without recompiling

@ The molecular dynamics code was written for 4000 atoms. If you want to run a
simulation for 256 and 1024 atoms, do you need to recompile and create two
executables?

@ Allocatable arrays allow us to set the size at run time.
real, allocatable :: force(:,:)
real, dimension(:), allocatable :: vel

@ We set the size of the array using the allocate statement.
allocate (force (natoms, 3))

@ We may want to change the lower bound for an array

allocate (grid(-100,100))
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o We may want to use an array once somewhere in the program, say during
initialization. Using allocatable arrays also us to dynamically create the array
when needed and when not in use, free up memory using the deallocate
statement

deallocate (force, grid)

Sometimes, we want to check whether an array is allocated or not at a particular
part of the code

Fortran provides an intrinsic function, allocated which returns a scalar logical
value reporting the status of an array

if ( allocated(grid))deallocate (grid)

if ( .not. allocated(force))allocate (force (natoms, 3))



Masked Array Assignment: Where Statement

@ Masked array assignment is achieved using the where statement
where ( ¢ < 2)a = b/c
the left hand side of the assignment must be array valued.

the mask (logical expression) and the right hand side of the assignment must all
conform

@ Fortran 95/2003 introduced the where ... elsewhere ... end where
functionality

@ where statement cannot be nested

! Apply PBC to ordinates ! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) ) do j =1, 3

coord(i,:) = coord(i,:) - boxl(:) if ( coord(i,j) > boxl(j) ) then
elsewhere ( coord(i,:) < 0d0 ) coord (i, j) = coord(i,j) - boxl(j)

coord(i,:) = coord(i,:) + boxl(:) else if ( coord(i,3j) < 0d0 ) then
end where coord (i, j) = coord(i,j) + boxl(j)

endif
end do




Procedures



Program Units |

@ Most programs are hundreds or more lines of code.

@ Use similar code in several places.

@ A single large program is extremely difficult to debug and maintain.

@ Solution is to break up code blocks into procedures

Subroutines: Some out-of-line code that is called exactly where it is coded
Functions: Purpose is to return a result and is called only when the result is
needed
Modules: A module is a program unit that is not executed directly, but

contains data specifications and procedures that may be utilized
by other program units via the use statement.




Program Units II

program main

use modulel ! specify which

implicit none ! impl
variable declarations !

in the program

ements in

call routinel(argl,arg2,arg3) ! call

subroutine routinel w

1 arguments

abc = func(argl,arg2) ! abc is some funct

of argl and arg2

contains | internal p dures

subroutine routinel (argl,arg2) !

routinel conter

end subroutine routinel ! all

must have an end

function func(argl,arg2) ! function funcl

1tents here

end function func

end program main




Program Units II1

program md

e : Jan 30, 2014

Liq
using Le:

rithm

gram should ng point to

! This program is hard for 4000 atoms equilibr

! 10K with a time step of 0.001 time units

assume that tim is femtose

1 femtoseco:

parameter

unit cells (you can’t do both)

the simulatio

not know why,

nMP/OpenACC Training

ng this exerci

directories for




Program Units IV

other potential. tential and

tional exerci.

nput file whic a u wan

-Jones Potential parameters

number of unit cells, uniform in all directi

s. change to nonu

number

nummber

mulation
ength

mann constant,
s Ar atom,

! e LJ parameter for simplicity

each step,

h ster

averac

ure

ing factor ed tempera

from Nume:

gasdev : Returns ean and unit

implicit none
! Use eithe or s
integer, parameter :: npartdim = 10
integer,parameter :: natom = 4.d0 » npartdim *x 3
integer,parameter :: nstep = 1000

reals8, parameter :: tempK = 10, dt = 1d-3
integer :: istep
box1(3),
n, i, 3, k, 1

ind function o

realss
integer

rd (natom, 3)




Program Units V

realss
realsd
realss

vel_t0(natom,3), vel(natom,3)
acc_t0 (natom, 3), acc(natom,3
force (natom, 3), pener, mass

realss
realss
realss

vem(3), r(3), rr, r2, 6, £
avtemp, ke, kb, epsilon, sigma, rcell(3,4), scale
gasdev

alat = 2d0 =+ (2d0/3d0)

do i -
box1(i) = npartdim * alat

end do

kb = 1.d0

mass = 1.d0

epsilon = 1.d0

sigma = 1.d0

| Create FCC unit cell

! Hint: Simp:

rcell(l,1) =

rcell(2,1) =

rcell(3,1) =

rcell(1,2) = 0

* alat
rcell(2,2) = 0.5d0 + alat
rcell(3,2) = 0d0
rcell(1,3) = 0d0

rcell(2,3) = 0.5d0 * alat
rcell(3,3) = 0.5d0 + alat
rcell(1,4) = 0.5d0 « alat
rcell(2,4) = 0d0

rcell(3,4) = 0.5d0 = alat

coordinates, veloc

coord_t0 (i,
vel_t0(i,3)
—£0 (1, 3)

al
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bordinates and

do i = 1, npartdim

do j npartdim
1, npartdim
1, 4
coord_t0(n,1) = alat
coord t0(n,2) = ala
coord_t0(n,3) = alat
n=n+
end do
end do
end do
end do
, status=
write (1, ) natom
write (1, +)
do i = 1, natom
write (1, )
end do
close (1)
n initial random v
1, natom
do j =1, 3
vel t0(i,j) = gasdev()
end do
end do

Momentum t

» dble(i - 1) + rcell(l,1)
« dble(3 - 1) + rcell(2,1)
» dble(k - 1) + rcell(3,1)

coord_t0(i, 1),

coord_t0(i,2),

coord_t0 (i, 3)
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Program Units VII

mom (vel

center of m

3
= vem(3) + vel_tO(i,3)/natom

vel t0(i,3) = vel t0(i,j) - vem(3)
end do
end do

int: Use dot

f using deri type:

ke = ke + mass * vel t0(i,3)**2

end do
end do
avtemp = mass * ke / ( 3d0 * kb * ( natom - 1)
print o , avtemp
! scale ir al velocity to desired temperature
scale = sqrt( tempK / avtemp )
ke = 0d0
do i = 1, natom
do j =1, 3

vel £0(i,j) = vel _t0(i,j) * scale
! Hint above

nction

o and

]
ke + mass x vel_tO(i,3)*#2
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Program Units VIII

avtemp = m

ass x ke / ( 3d0 » kb » ( natom - 1))
print .

, avtemp
! MD Simulation
do istep = 1, nstep
' nates, eration and force at next time
! rray
do i natom
doj=1, 3
= 0do
0do
0do
force(i,j) = 0d0
end do
end do
pener = 0d0

do j =1, 3

coordl(i, + vel_t0(i, wdt s 2
Apply
if ( coord(i,j) > boxl(j) ) then

coord(i,j) = coord(i,j) - boxl(3)
else if ( coord(i,j) < 0d0 ) then
coord (i, J) coord(i, j) + boxl(3J)
endif
end do
end do

ne

Lennard Jo

you might erate the

ste subroutine




Program Units IX

1 be useful if

want to use other tials
do i - 1, natom - 1
do j = i + 1, natom
dok =1, 3
r(k) = coord(i, k) - coord(j,k)
minimum image rion
interaction of an atom with another atom or its image within the
r(k) = r(k) - nint( r(k) / boxl(k) ) % boxl(k
end do
Hint: Use dot_product
Iro= r(l) *x 2 + £(2) ** 2 + £(3) *x 2

r2 = 1.d0 / rr
r6 = r2 *x 3
Lennard

! = 48

pener = pener + 4d0

£ = 48d0 * r2 » r6 » ( r6 - 0.5d0
dok =1, 3
use nction to obtain

force (i, k) = force(i, k) + r(k) + £
force (j,k) = force(j, k) - r(k) x f

end do

end do
end do

Ve at current time

acc(i,j) = force(i,j) / mass
vel(i,J) = vel_t0(i,§) + 0.5d0 = (acc(i, ) + acc_t0(i,3)) » dt
end do
end do
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Program Units X

3
vem(3) = vem(3) + vel(i,j)/natom

nter of mas

from all atoms

natom
3
vel(i,3) = vel(i, i) - vem(3)
end do
end do
| et

See Hint above ing average temperatur
ke = 0d0
do i = 1, natom

do j =1, 3

= ke + vel(i, j) »* 2

mass * ke / ( 3d0 » kb * ( natom - 1)
print , , istep, avtemp, pener

sqrt ( tempk/ a

ace (i, )
coord (i, 3)

to d

vel t0(i,3) = vel(i,j) » scale

ten

! W urrent coordinates to xyz e for visualization

open (unit:

file— ,position=

33/96



write (1, ) natom

write (1, *)
do i = 1, natom

write (1, ) , coord_t0(i,1), coord t0(i,2), coord tO(i,3)

close (1)
end do

end program md

double precision function gasdev()
implicit none
reals8 :: vl, v2,
realss, save :: gset
logical, save :: available

.false.

if (available) then
gasdev = gset
available - .false.
else
do
call random number (v1)
call random number (v2)
vl =2.d0 + vl - 1.d0
v2 2.d0 » v2 - 1.d0
rsq = vies2 + v2uk2
if (rsq > 0.d0 .and. rsq < 1.d0 ) exit

/ rsq)

end function gasdev




Subroutines |

o Call Statement:

o The call statement evaluates its arguments and transfers control to the subroutine
@ Upon return, the next statement is executed.

o SUBROUTINE Statement:

o The subroutine statement declares the procedure and its arguments.
@ These are also known as dummy arguments.
o The subroutine’s interface is defined by
@ The subroutine statement itself
@ The declarations of its dummy arguments
@ Anything else that the subroutine uses
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Subroutines 11

@ Statement Order

o A subroutine statement starts a subroutine
Any use statements come next
implicit none comes next, followed by
rest of the declarations,
executable statements
End with a end subroutine statement

@ Dummy Arguments
@ Their names exist only in the procedure and are declared as local variables.
@ The dummy arguments are associated with the actual arguments passed to the subroutines.
@ The dummy and actual argument lists must match, i.e. the number of arguments must be the
same and each argument must match in type and rank.




Subroutines 111

subroutine verlet (coord,
use precision
use potentia
use param, only
implicit none
real (dp) ,
real (dp) ,
real(dp),

coord_t0, vel, vel_t0, acc,

natom, mass, dt, boxl, pot

dimension (:, 1),
dimension (:,
intent (out)

intent (in)
, intent (out)
pener

coord, vel,

coord = coord_t0 + vel t0 = dt + £0 + dt
do i = 1, natom
where ( coord(i,:) > boxl(
coord (i, :) = coord(i,:)
elsewhere ( coord(i,:) < 0d0 )
coord (i, :) = coord(i, :)
end where
end

do i = 1, natom - 1
o i+ 1, natom
= coord(i,

) - coord(i, :)

r=r - nint(r / boxl ) « boxl
select case (pot)
case (")

call morse( r, f, epot )
case default

call lennard_jones( r, f, epot )
end select
pener = pener + epot
force (i, :) = force(i,:) + £(:)
force (3 force (3, ) - £(:)

end do

end subroutine verlet

£0, vel_t0, acc

, force, pener)

ace, force

program md

real(dp),
real(dp),
real(dp),
real (dp)

dimension (:

, allocatable :: coord_t0,
allocatable

, allocatable :: acc_t0, acc,

dimension (

vel_t0, vel
dimension (:

t: pener

interface

subroutine verlet (

£0, vel_t0,

real (dp),
real(dp), dimension(:,:),
real(dp), intent (out)

end subroutine verlet

), intent (in)
intent (out)
pener

end interface

coord = 0d0 ; vel = 0d0 ; ac

0d0

0d0 ; pener

call verlet (coord, c

oord_t0, vel_t

deallocate (coord_t0,vel t0,

c_£0, coord, vel, acc, force)
end program md

force

pener)




Internal Procedures

o Internal procedures appear just before the last end statement and are preceeded
by the contains statement.

o Internal procedures can be either subroutines or functions which can be accessed
only by the program, subroutine or module in which it is present

o Internal procedures have declaration of variables passed on from the parent
program unit

o If an internal procedure declares a variable which has the same name as a
variable from the parent program unit then this supersedes the variable from the
outer scope for the length of the procedure.




Functions

@ functions operate on the same principle as subroutine$

o The only difference is that function returns a value and does not involve the
call statement

module potential
use precision

d2 = dot_product (r, r)
implicit none d = sqrt(d2)

real(dp) :: r2, 6, d2, d exparre = exp( -a  (d - re ))
real (dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0

real(dp) :: exparre £

dr_mp (exparre) + r

pot_mp (exparre)
contains

P
end subroutine morse
subroutine ler nes (r, £,p)

function pot_1j(r2, r6)

implicit none

real(dp), intent(in) :: r2, r6

real (dp)
. A/) *46 . . 0. . pot_1j = 4d0 » £6 * ( r6 - 1.d0 )
= %y, end function pot_1j

pot_13

. . o am function pot_mp (exparre)
. one implicit none
implicit none real(dp), intent(in) :: exparre
real(dp), dimension(:), intent(in) :: x real(dp) :: pot_mp
real(dp), dimension intent (out)

pot_mp = de + ( 1d0 - exparre )2
real(dp), intent(out) :: p end function pot_mp
r2

= 1.d0 / dot_product (r, )
r6 = r2

function dvdr_1j(r2,r6)
2 % 3 implicit none

1

real(dp), intent(in) :: r2, r6
dvdr_13(r2, £6) » ¢ real(dp) :
pot_1j(r2, r6) dvdr_1j = 48 0.5d0 )
end subroutine lennard_jones end function dvdr_1j
function dvdr_mp (exparre)

subroutine morse (r, f,p) implicit none

| Morse Potent real(dp), intent(in) :: exparre

\ Sl = ) 17 real(dp) :: dvdr_mp

L F_i = 24D xp (-ax ( e)) 1 * a exp(-a dvdr_mp = 2d0  de * a

implicit none

a » (1d0 - exparre) » exparre
end function dvdr_mp

real(dp), dimension(:), intent(in) :: end module potential

real (dp), dimension intent (out)
real(dp), intent(out) :: p




Array-valued Functions

@ function can also return arrays

module potential
use precision
implicit none
real (dp) r2, rs,
real (dp), parameter
real(dp) :: exparre

a = 1.4d0, re = 1d0

contains
subroutine lennard_jones (r, f,p)
! Lenn tial

(sigma/r) +

(sigma/r)**2 - 1 ]

implicit none

real (dp), dimension(:), intent (in)
real (dp), dimension(:), intent (out)
real(dp), intent(out) :: p

r2 = 1.d0 / dot_product (r,r)
6 2 4% 3

£ = dvdr_1j(r2, r6, 1)
p = pot_1j(r2, 6)
end subroutine lennard jones

subroutine morse (r, f,p)

U Fi = 24D «
implicit none
real(dp), dimension intent (in)
real (dp), dimension intent (out)
real(dp), intent (out) :: p

end module poten

d2 - dot_product (r, r)
sqrt (d2)
rre = exp( -a * (d - re ))

dvdr_mp (exparre, r)
p = pot_mp (exparre)
end subroutine morse

function pot_1§(r2, r6)
implicit none
real (dp), intent (in)
real (dp)
pot_1j = 4d0 = r6 = ( r6 - 1.d0 )
end function pot_1j
function pot_mp (exparre)
implicit none
real(dp), intent(in) :: exparre
real(dp) :: pot_mp
pot_mp = de » ( 1d0 - exparre )2
end function pot_mp

function dvdr_1j(r2,r6,r)
implicit none
real (dp), intent (in) r2, r6, r
real(dp), dimension(size(r)) :: dvdr,
dvdr_1j = 48d0 = r2 * r6 x ( 6 - 0.
end function dvdr_1j
function dvdr_mp (exparre, r)
implicit none
real (dp), intent(in) :: exparre, r
real (dp), dimension (size(r)) dvdr_mp
dvdr_mp = 2d0  de * a * (1d0 - exparre) » exparre
end function dvdr_mp
1




Recursive Procedures

@ In Fortran 90, recursion is supported as a feature

@ recursive procedures call themselves

© recursive procedures must be declared explicitly

© recursive function declarations must contain a result keyword, and
© one type of declaration refers to both the function name and the result variable.

[apacheco@qb4 Exercise] ./factorial
program fact enter integer whose factorial you want to calculate
o 10
implicit none 10! 3628800
eeErE 58 A [apacheco@qb4 Exercise] ./factl
print «+, Enter an integer < 15
) 10
read x, i 101= 3628800
print iy , factorial (i)
contains
recursive function factorial(i) result (i_fact)
integer, intent (in) :: i
integer :: i_fact

if (i > 0 ) then

i_fact = i » factorial(i - 1)
else

i_fact = 1
end if

end function factorial

end program fact




Interfaces I

@ The interface statement is the first statement in an interface block.

@ The interface block is a powerful structure that was introduced in FORTRAN
90.

@ When used, it gives a calling procedure the full knowledge of the types and
characteristics of the dummy arguments that are used inside of the procedure that
it references.

o This can be a very good thing as it provides a way to execute some safety checks
when compiling the program.

@ Because the main program knows what argument types should be sent to the
referenced procedure, it can check to see whether or not this is the case.

o If not, the compiler will return an error message when you attempt to compile
the program.




Interfaces II

subroutine verlet (coord, coord t0, vel, vel t0, acc,
pener)
use precision
use param, only : natom, mass, dt, boxl, pot
implicit none
real (dp), dimension(:,:), intent (in:
real(dp), dimension(:,:), intent (out

coord, vel, acc, force

real(dp), intent (out) pener
integer(ip) :: i
interface

subroutine get_pot_force(coord, force, pener

real (dp), dimension(:,:), intent(in) :: coord
real (dp), dimension(:,:), intent(out) :: force
real(dp), intent (out) pener
end subroutine get_pot_force
end interface

on and

from

Ver
«dt + 0.5d0 * acc_t0 x dt x 2

do i = 1, natom

PBC to coordin
where ( coord(i,:) > boxl(:)
coord(i,:) = coord(i,:) - boxl(:
elsewhere ( coord(i,:) < 0d0
coord(i,:) = coord(i,:) + boxl(:)
end where
end do

Potential and forc st EEmiEETE

call get_pot_force(coord, force, pener

and Velo at current time step

coord_t0, vel t0, acc_t0

acc = force / mass
vel = vel _t0 + 0.5d0 » ( acc + acc_t0 )  dt

end subroutine verlet

subroutine ge!
use precision
use potential
use param, only : natom, boxl
implicit none
real(dp), dimension(:,:), intent(in) :: coord
real (dp), dimension ), intent (out
real (dp), intent(out) :: pener
integer(ip) :: i, j
real(dp) :: epot
real(dp) :: r(3), £(3

pot_force (coord, force, pener,

force

pener = 0d0
force = 0d0
do i = 1, natom - 1
i + 1, natom
coord(i,:) - coord(j, :
mum image crit
r - nint( r / boxl ) * boxl
select case (pot)
case ( )
call morse( r, f, epot
case default
call lennard jones( r, f, epot )
end select
pener = pener + epot
force(i,:) = force(i,:) + £(:)
force (3, :) = force(j,:) - £(:)
end do
end do

rio

end subroutine get_pot_




Interfaces III

subroutine verlet (coord, coord_t0, vel, vel t0, acc, acc_t0, fo:
pener)

use precision
use param, only : natom, mass, dt, boxl, pot
implicit none
real (dp), dimension
real (dp), dimension
real (dp), intent (out)
integer (ip)

intent (in)
intent (out)
: pener

coord_t0, vel_t0,
coord, vel, acc,

coord = 0d0 ; vel = 0d0 ; acc = 0d0

! Apply PBC to coordinates

where ( coord(i,:) > boxl(:) )
coord(i,:) = coord(i,:) - boxl(:)

elsewhere ( coord(i,:) < 0d0 )
coord(i,:) = coord(i,:) + boxl(:)

end where

end do

e at new atom p

ord, force, pener)

culate leration and at current time st
acc = force / mass
vel = vel_t0 + 0.5d0 * ( acc + acc_t0 ) * dt

contains

subroutine get_pot_ force(coord, force, pener)
use potential
implicit none
real (dp), dimension
real (dp), dimension
real(dp), intent (out)

1), intent (in)
, intent (out)
pener

coord

force

integer (ip) i, 9
real (dp) :: epot
real(dp) :: r(3), £(3)

:) - coord(j
criterion
r=r - nint(r / boxl ) * boxl
select case (pot)
case (

call morse( r, £, epot )
case default

call lennard_jones( r, f, epot
end select
= pener + epot
:) = force(i,:) + £(:)
:) = force(j,:) - £(:)

end subroutine get_pot_force

end subroutine verlet

@ Here since subroutine get_pot_force isan internal procedure, no interface is required since it
is already implicit and all variable declarations are carried over from subroutine verlet




Intent

@ intent attribute was introduced in Fortran 90 and is recommended as it
@ allows compilers to check for coding errors
© facilitates efficient compilation and optimization
@ Declare if a parameter is
¢ Input: intent (in)
¢ Output: intent (out)
¢ Both: intent (inout)

subroutine verlet (coord, coord_tO0, vel_tO, vel, acc_t0, acc, force, pener)
use precision
use param, only : natom, mass, boxl, dt
implicit none

real (dp) ,dimension(:,:), intent(in) :: coord_t0O, vel_tO0, acc_t0
real (dp) ,dimension(:,:), intent (out) :: coord, vel, acc, force
real (dp), intent (out) :: pener

end subroutine verlet

@ A variable declared as intent (in) in a procedure cannot be changed during the
execution of the procedure (see point 1 above)




Argument Association

@ Recall from MD code example the invocation
call linearmom(vel_tO0)
@ and the subroutine declaration

subroutine linearmom(vel)

@ vel_ t0 is an actual argument and is associated with the dummy argument vel
@ In subroutine linearmom, the name vel is an alias for vel_t0

o If the value of a dummy argument changes, then so does the value of the actual
argument

@ The actual and dummy arguments must correspond in type, kind and rank.




Local Objects

@ In subroutine linearmom,

i and vem are local objects.
@ Local Objects

¢ are created each time a procedure is
invoked

¢ are destroyed when the procedure
completes

¢ do not retain their values between calls

¢ do not exist in the programs memory
between calls.

subroutine linearmom (vel)
use precision
use param, only : natom
implicit none
real(dp), dimension(:,:), intent(inout) :: ve

integer (ip)
real(dp) :

vem(i) = sum(vel(:, 1))

vem = vem / real (natom, dp!

y from all atoms

vel(i,:) = vel(i,:) - vem(:)
end do

end subroutine linearmom



Optional & Keyword Arguments I

@ Optional Arguments

@ allow defaults to be used for missing arguments
@ make some procedures easier to use

@ once an argument has been omitted all subsequent arguments must be keyword
arguments
o the present intrinsic can be used to check for missing arguments

o if used with external procedures then the interface must be explicit within the
procedure in which it is invoked.

subroutine get_temp (vel,boltz) subroutine initialize(coord t0, vel t0, acc_t0)
use precision s
use param, only : natom, avtemp, mass, kb interface
implicit none subroutine linearmom(vel)
real(dp), dimension(:,:), intent(in) :: vel use precision
real(dp), optional :: boltz implicit none
integer(ip) :: i real(dp), dimension(:,:), intent (inout) :: vel
real(dp) :: ke end subroutine linearmom
subroutine get_temp(vel, boltz)
if (present (boltz))kb = boltz use precision
ke = 0d0 implicit none
do i = 1, natom real(dp), dimension(:,:), intent(in) :: vel
ke = ke + dot_product (vel (i,:),vel (i, :)) real(dp), optional :: boltz
end do end subroutine get_temp
avtemp = mass = ke / ( 3d0 * kb * real( natom - 1, dp)) end interface

end subroutine get_temp call get_temp (vel_t0)




Optional & Keyword Arguments II

o Keyword Arguments
@ allow arguments to be specified in any order
@ makes it easy to add an extra argument - no need to modify any calls
@ helps improve readability of the program
@ are used when a procedure has optional arguments

@ once a keyword is used, all subsequent arguments must be keyword arguments

o if used with external procedures then the interface must be explicit within the
procedure in which it is invoked.

subroutine initialize(coord, vel, acc) program md

coo call initialize(coord t0, vel t0, acc_t0)
real (dp) ,dimension(:,:), intent (out) :: coord, vel e
, acc end program md

end subroutine initialize




Optional & Keyword Arguments I11

@ subroutine initialize can be invoked using

@ using the positional argument invocation
© using keyword arguments

program md

interface
subroutine initialize (coord, vel, acc)
use precision
implicit none
real (dp), dimension(:,:), intent (out) :: coord, vel, acc
end subroutine initialize
end interface

! A1l three calls give the same result.
call initialize (coord_tO0, vel_t0, acc_tO0)
call initialize(coord=coord_t0, acc=acc_t0, vel=vel_tO0)
call initialize(coord_t0, acc=acc_t0, vel=vel_tO0)




Dummy Array Arguments

o There are two main types of dummy array argument:

@ explicit-shape: all bounds specified
real, dimension (4,4), intent (in):: explicit_shape
The actual argument that becomes associated with an explicit shape dummy must conform in
size and shape

© assumed-shape: no bounds specified, all inherited from the actual argument
real, dimension(:,:), intent (out):: assumed_shape
An explicit interface must be provided

© assumed-size: final dimension is specified by *
real :: assumed_size (diml,dim2, *)
Commomly used in FORTRAN, use assumed-shape arrays in Modern Fortran.

o dummy arguments cannot be (unallocated) allocatable arrays.




Explicit-shape Arrays

program md
use precision
use param
implicit none

integer(ip) :: n, i, 3, k, 1
real(dp), dimension(:,:), allocatable :: coord_t0, vel t0, acc_t0
real(dp), dimension(:,:), allocatable :: coord, vel, acc, force

allocate (coord(natom,3), coord_tO (natom,3))
allocate (vel (natom,3), vel_tO0(natom,3))
allocate (acc (natom, 3), acc_tO0 (natom,3))
allocate (force (natom, 3))

rdinates and random velocities

call initialize(coord_t0, vel_t0, acc_t0)

end program md

subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
use param, only : natom, npartdim, alat, rcell
implicit none
real(dp), dimension(natom,3) :: coord_t0, vel_t0, acc_t0
integer(ip) :: n, i, 3, k, 1

itial coordinates, velocity and accele
coord_t0 = 0d0 ; vel_tO 0d0 ; acc_t0 = 0d0

end subroutine initialize




Assumed-Shape Arrays

program md
use precision
use param
implicit none
integer(ip) :: n, i, 3, k, 1
real (dp), dimension(:,:), allocatable
real(dp), dimension(:,:), allocatable

coord_t0, vel t0, ac
coord, vel, acc, force

interface

subroutine initialize(coord
use precision
implicit none

real(dp), dimension(:,

end subroutine initialize

, vel_t0, acc_t0)

), intent (out) :: coord_t0, vel

allocate (coord (natom, 3), coord_t0 (natom, 3)
allocate (vel (natom,3), vel tO(natom,3))
allocate (acc(natom,3), acc_t0(natom,3))
allocate (force (natom, 3))

call initialize(coord_t0,
end program md

subroutine initialize(coord t0, vel t0, acc_t0)
use precision

only : natom, npartdim, alat, rcell

implicit none

real (dp), dimension(:,:), intent (out

integer(ip) :: n, i, 3, k, 1

: coord_t0, vel_t0, acc_t0

coordinates

, veloc
; vel_t0 = 0d0 ; acc_t0 = 0d0

and acceleration to

end subroutine initialize




Automatic Arrays

o Automatic Arrays: Arrays which depend on dummy arguments

their size is determined by dummy arguments
they cannot have the save attribute or be initialized.

@ The size intrinsic or dummy arguments can be used to declare automatic arrays.
program main
implicit none

integer :: i,
real, dimension (5,6) :: a

call routine(a,i, j)

contains

subroutine routine(c,m,n)
integer :: m,n
real, dimension(:,:), intent (inout)
real :: bl (m,n)

real, dimension(size(c,1),size(c,2))

end subroutine routine
end program main




Save Attribute and Arrays

@ Declaring a variable (or array) as save gives it a static storage memory.
@ i.e information about variables is retained in memory between procedure calls.

subroutine something(iargl)
implicit none

integer, intent (in) :: iargl
real,dimension(:, :),allocatable, save :: a
real, dimension(:,:),allocatable :: b

if (.not.allocated(a))allocate(a(i,]j))
allocate(b(j,1))

deallocate (b)
end subroutine something

@ Array a is saved when something exits.

@ Array b is not saved and needs to be allocated every time in something and
deallocated, to free up memory, before something exits.




Modules |

@ Modules were introduced in Fortran 90 and have a wide range of applications.
@ Modules allow the user to write object based code.

@ A module is a program unit whose functionality can be exploited by other
programs which attaches to it via the use statement.
@ A module can contain the following
@ global object declaration: replaces Fortran 77 COMMON and INCLUDE statements
@ interface declaration: all external procedures using assumed shape arrrays, intent and
keyword/optional arguments must have an explicit interface
© procedure declaration: include procedures such as subroutines or functions in modules. Since
modules already contain explicit interface, an interface statement is not required




Modules 11

module precision real (dp) oK, dt, boxl(3), alat, mass
implicit none real(dp) :: emp, ke, kb, epsilon, sigma, scale
save real (dp) ,dimension 4) = cell = reshape( (/ &
integer, parameter :: ip - selected int kind(15) 0.0D+00, 0.0D+00, 0.0D+00, &
integer, parameter :: dp = selected real kind(15) 0.5D+00, 0.5D+00, 0.0D+00, &
end module precision 0.0D+00, 0.5D+00, 0.5D+00, &
0.5D+00, 0.0D+00, 0.5D+00 /), (/ 3, 4 /) )
module param character (len=2) :: pot
use precision end module param
implicit none
integer (ip) :: npartdim, natom, nstep, istep

@ within a module, functions and subroutines are called module procedures.
module procedures can contain internal procedures
module objects that retain their values should be given a save attribute

modules can be used by procedures and other modules, see module precision.

modules can be compiled separately. They should be compiled before the
program unit that uses them.

Observe that in my examples with all code in single file, the modules appear
before the main program and subroutines.




Modules 111

Visibility of module procedures
o By default, all module procedures are public i.e. they can accessed by program
units that use the module using the use statement
@ To restrict the visibility of the module procedure only to the module, use the
private Statement
@ In the module potential, all functions which calculate forces can be declared as
private as follows

module potential
use precision
implicit none

real(dp) :: r2, r6, d2, d
real (dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0
real(dp) :: exparre

public :: lennard_jones, morse, pot_lj, pot_mp

private :: dvdr_1j, dvdr_mp
contains

end module potential

@ Program Units in the MD code can directly call
lennard_jones, morse, pot_17 and pot_mp but cannot access dvdr_17j and

dvdr_mp




Modules IV

Using Modules

@ The use statement names a module whole public definitions are to be made
accessible.

To use all variables from module param in program md:

program md
use param

end program md

@ module entities can be renamed

To rename pot and dt to more user readable variables:

use param, pot => potential, dt => timestep

o It’s good programming practice to use only those variables from modules that are
neccessary to avoid name conflicts and overwrite variables.

@ For this, use the use <modulename>, only statement

subroutine verlet (coord, force,pener)
use param,only : dp,npart,boxl,tstep

end subroutine verlet




Compiling Modules I

@ Consider the MD code containing a main program md . £ 90, modules
precision.f90, param.f90 and potential.f90 and subroutines
initialize.f£90,verlet.£90, linearmom.£90 and
get_temp.£90.

@ In general, the code can be compiled as

ifort -o md md.f90 precision.f90 param.f90 potential.f90 initialize.f90 \
verlet.f90 linearmom.f90 get_temp.£90

@ Most compilers are restrictive in the order of compilation.
@ The order in which the sub programs should be compiled is

o Modules that do not use any other modules.
Modules that use one or more of the modules already compiled.
Repeat the above step until all modules are compiled and all dependencies are resolved.
Main program followed by all subroutines and functions (if any).

@ In the MD code, the module precision does not depend on any other modules
and should be compiled first

@ The modules param and potential only depend on precision and can be
compiled in any order




Compiling Modules II

@ The main program and subroutines can then be compiled

ifort -o md md.f90 precision.f90 param.f90 potential.f90 initialize.f90 \
verlet.f90 linearmom.f90 get_temp.f90

@ modules are designed to be compiled independently of the main program and

create a . mod files which need to be linked to the main executable.

ifort -c precision.f90 param.f90 potential.f90
creates precision.mod param.mod potential.mod

@ The main program can now be compiled as

ifort -o md md.f90 initialize.f90 verlet.f90 linearmom.f90 get_temp.£f90 \
—-I{path to directory containing the .mod files}




Derived Types



Derived Types I

Defined by user (also called structures)

Can include different intrinsic types and other derived types

Components are accessed using the percent operator (%)

Only assignment operator (=) is defined for derived types

Can (re)define operators - see operator overloading

Derived type definitions should be placed in a module.

Previously defined type can be used as components of other derived types.

type line_type
real :: x1, yl, x2, y2
end type line_type

type(line_type) :: a, b

type vector_type

type(line_type) :: line ! defines x1,yl,x2,y2

integer :: direction ! O=nodirection, 1=(x1,yl)->(x2,y2)
end type vector_type

type (vector_type) :: c, d




Derived Types 11

@ values can be assigned to derived types in two ways

@ component by component
individual component may be selected using the % operator
© as an object
the whole object may be selected and assigned to using a constructor

asxl = 0.0 ; a%x2 = 0.5 ; asyl = 0.0 ; a%y2 = 0.5

c3direction = 0
c3line$xl = 0.0 ; c%line%x2 = 1.0
c3linesyl = -1.0 ; c%linesy2 = 0.0

b = line_type (0.0, 0.0, 0.5, 0.5)

d%line = line_type (0.0, -1.0, 1.0, 0.0)}
d = vector_type( dsline, 1)
!
d

- vector_type( line_type(0.0, -1.0, 1.0, 0.0), 1)




Derived Types II1

@ Assigment between two objects of the same derived type is intrinsically defined

In the previous example: a = b is allowed but a = c is not.

coord_t0(n)%$x = alat * real(i - 1, dp) + rcell(l,1l)
coord_t0(n)%y = alat * real(j - 1, dp) + rcell(2,1)
coord_t0(n)%z = alat * real(k - 1, dp) + rcell(3,1)

OR
x = alat * real(i - 1, dp) + rcell(l,1)
y = alat * real(j - 1, dp) + rcell(2,1)
z = alat » real(k - 1, dp) + rcell(3,1)
coord_t0(n) = dynamics( X, y, z )

I/O on Derived Types
@ Can do normal I/O on derived types
print «, a will produce the result1.00.51.5
print «, c will produce theresult2.00.00.00.0
Arrays and Derived Types

@ Can define derived type objects which contain non-allocatable arrays and arrays of derived

type objects

Derived Type Valued Functions




Derived Types IV

@ Functions can return results of an arbitrary defined type.
@ Private Derived Types
@ A derived type can be wholly private or some of its components hidden

module data

type :: position
real, private :: x, y, z

end type position

type, private :: acceleration
real, private :: x, y, z

end type acceleration

contains

end module data

@ Program units that use data have position exported but not it’s components x, y, z and
the derived type acceleration




Generic Procedures I

@ In Fortran, most intrinsic functions are generic in that their type is determined by
their argument(s)
@ For example, the abs (x) intrinsic function comprises of

@ cabs : called when x is complex
© abs : called when x is real
@ iabs: called when x is integer

@ These sets of functions are called overload sets

o Fortran users may define their own overload sets in an interface block

interface clear
module procedure clear_real, clear_type, clear_typelD
end interface

@ The generic name clear is associated with specific names

clear_real, clear_type, clear_typelD




Generic Procedures II

module dynamic_data

type dynamics
real(dp) :: x,y,z
end type dynamics
interface dot_product
module procedure dprod
end interface dot_product
interface clear
module procedure clear_real, clear_type,
clear_typelD
end interface

contains
function dprod(a,b) result (c)
type (dynamics), intent (in) :: a,b
real(dp) :: c

c = a%x * b%x + a%y * by + a%z * b%z
end function dprod
subroutine clear_real(a)
real (dp) ,dimension(:, :), intent (out)
a = 0d0
end subroutine clear real

subroutine clear_type (a)

type (dynamics) , dimension (:), intent (out) ::
a
a%$x = 0d0 ; a%y = 0d0 ; a%z = 0d0

end subroutine clear_type

subroutine clear_typelD (a)

type (dynamics) , intent (out) a

as$x = 0d0 ; a%y = 0d0 ; a%z = 0d0
end subroutine clear_typelD
end module dynamic_data

program md
use dynamic_data

type (dynamics),dimension (:),allocatable :: coord,coord
0,vel, force

allocate (coord (npart), coord0 (npart) ,vel (npart), force (
npart) )

do i=1,npart
v2t = v2t + dot_product (vel (i), vel(i))
enddo
end program md
subroutine setup (coord,vel, coord0)
type (dynamics) :: vt
call clear (coord)
call clear (coord0)
call clear (vel)

call clear (vt)

end subroutine setup




Generic Procedures III

@ The dot_product intrinsic function is overloaded to inlcude derived types

@ The procedure c1ear is overloaded to set all components of derived types and all
elements of 2D real arrays to zero.




Operator Overloading I

@ Intrinsic operators such as +, -, * and / can be overloaded to apply to all types of
data

@ Recall, for derived types only the assignment (=) operator is defined

@ In the MD code, coord_t (i)= coord_t0 (i) is well defined, but
vel_t(i)= vel_t (i)* scalef 1S not
@ Operator overloading as follows
specify the generic operator symbol in an interface operator statement
specify the overload set in a generic interface
declare the module procedures (functions) which define how the operations are
implemented.
these functions must have one or two non-optional arguments with intent (in) which
correspond to monadic or dyadic operators

© 000




Operator Overloading II

module dynamic_data c%z = a%z * b
end function scale_tr
type dynamics type (dynamics) function scale_rt (b,a) result(c)
real(dp) :: X,y,2 type (dynamics) , intent (in) :
end type dynamics real (dp),intent (in) :: b
type (dynamics) :: c
interface operator (*) c%x = b * a%x
module procedure scale_tr, scale_rt csy = b * a%y
end interface operator (x) c%z = b » a%z
interface operator (+) end function scale_rt
module procedure add type (dynamics) function add(a,b) result (c)
end interface operator (+) type (dynamics),intent (in) :: a,b
contains type (dynamics) :: c
type (dynamics) function scale_tr (a,b) result (c) c%x = a%x + b%x
type (dynamics), intent (in) ::a c%y = a%y + bsy
real (dp),intent (in) :: b c%z = a%z + b%z
type (dynamics) :: c end function add
c%x = a%x * b end module dynamic_data

c%y = a%y * b

@ The following operations are now defined for derived types a, b, c and scalar r

cC =a *r
cC =1r x a
c=a+b




Operator Overloading III

o If operator overloading is not defined, the above operations would have to be
executed as follows whereever needed

c%x = a%x * r
c%y = a%y * r
c%z = a%z x r
c%x r * a%$x
c%y = r x asy
c%z r *x a%z
c%x a%$x + b%x
c%y = a%y + b%y
c%z a + b%z




Object Based Programming



OOP Concepts

@ Fortran 90 has some Object Oriented facilites such as

data abstraction: user defined types (covered)

data hiding - private and public attributes (covered)

encapsulation - modules and data hiding facilities (covered)

inheritance and extensibility - super-types, operator overloading and generic procedures
(covered)

polymorphism - user can program his/her own polymorphism by generic overloading
resuability - modules



@ In Fortran, a pointer variable or simply a pointer is best thought of as a
“free-floating” name that may be associated with or “aliased to”” some object.

@ The object may already have one or more other names or it may be an unnamed
object.

@ The object represent data (a variable, for example) or be a procedure.
@ A pointer is any variable that has been given the pointer attribute.

@ A variable with the pointer attribute may be used like any ordinary variable.




Pointers II

@ Each pointer is in one of the following three states:

undefined condition of each pointer at the beginning of a program, unless it has been initialized
null not an alias of any data object
associated it is an alias of some target data object

@ pointer objects must be declared with the pointer attribute
real, pointer :: p

@ Any variable aliased or “pointed to” by a pointer must be given the target
attribute

real, target :: r

@ To make p an alias to r, use the pointer assignment statement

p=>r




Pointers III

@ The variable declared as a pointer may be a simple variable as above, an array
or a structure

real, dimension(:), pointer :: v

@ pointer v declared above can now be aliased to a 1D array of reals or a row or
column of a multi-dimensional array

real, dimension(100,100), target :: a
v => a(5,:)
@ pointer variables can be used as any other variables
For example, print «, vand print %, a(5,:) are equivalent
v = 0.01sthe same asa(5,:)= 0.0
@ pointer variables can also be an alias to another pointer variable




Pointers IV

o Consider the following example @ Consider the following example
real, target :: r real, target :: rl, r2
real, pointer :: pl, p2 real, pointer :: pl, p2
r = 4.7 rl = 4.7 ; r2 = 7.4
pl => pl => rl ; p2 => r2
p2 => print %, rl, r2, pl, p2

r
r

print x, r, pl, p2 pl = p2

r=7.4 print %, rl, r2, pl, p2
s

print %, r, pl, p2

. @ The output on the screen will be
@ The output on the screen will be . 7_4p4.7 )

4.7 4.7 4.7 4.7 4.7 4.7 4.7
7.4 7.4 7.4

@ The assignment statement p2= pl
has the same effect of r2= r1
since p1 is an alias to r1 and p2 is
an alias to r2

@ Changing the value of r to 7.4
causes the value of both p1 and p2
to change to 7.4

@ The allocate statement can be used to create space for a value and cause a
pointer to refer to that space.
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allocate (pl) creates a space for one real number and makes p1 an alias to that
space.

@ No real value is stored in that space so it is neccessary to assign a value to p1
@ pl= 4.7 assigns a value 4.7 to that allocated space

@ Before a value is assigned to p1, it must either be associated with an unnamed
target using the allocate statement or be aliased with a target using the pointer
assignment statement.

@ deallocate statement dissociates the pointer from any target and nullifies it

deallocate (pl)




Pointer Intrinsic Functions

o null intrinsic

@ pointer variables are undefined unless they are initialized
pointer variable must not be reference to produce a value when it is undefined.
It is sometime desirable to have a pointer variable in a state of not pointing to anything
The null intrinsic function nullifies a pointer assignment so that it is in a state of not pointing
to anything
pl=> null()
o If the target of pl and p2 are the same, then nullifying p1 does not nullify p2
@ Ifpl isnull and p2 is pointing to p1, then p2 is also nullified.
@ associated intrinsic

@ The associated intrinsic function queries whether a pointer varibale is pointing to, or is an
alias for another object.
associated (pl, rl) and associated (p2, r2) are true, but
associated (pl, r2) and associated (p2, rl) are false




Extended Data Types I

@ Recall the derived type example which has as a component another derived type

type, public :: line_type
real :: x1, yl, x2, y2
end type line_type
type, public :: vector_type
type(line_type) :: line !position of center of sphere
integer :: direction ! 0O=no direction, 1=(x1,yl)->(x2,y2)
end type vector_type

@ An object, c, of type vector_type is referenced as
c%line%$xl, c%line%yl, c%line%x2, c%line%y2 and c$direction which can
be cumbersome.




Extended Data Types II

o In Fortran, it is possible to extend the base type 1ine_type to other types such as
vector_type and painted_line_type as follows

type, public, extends(line_type) :: vector_type
integer :: direction

end type vector_type

type, public, extends(line_type) :: painted_line_type
integer :: r, g, b ! rgb values

end type painted_line_type

@ An object,c of type vector_type inherits the components of the type 1ine_type
and has components x1, y1, x2, y2 and direction and is referenced as
c%x1l, c%yl, c3%x1, c%y2 and c%direction

o Similarly, an object, d of type painted line_type is referenced as
dsxl, d%y2, dsx2, dsy2, dsr, dsgand dsb

o The three derived types constitute a c1ass; the name of the class is the name of
the base type 1ine_type
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Exercise



Hands-On Exercise: Molecular Dynamics

@ Molecular Dynamics code for melting of solid Argon using Lennard-Jones
Potential.

@ Your goal is to rewrite the code using Modern Fortran concepts that you have
grasped.

o This exercise is more of a "What concepts have I learned of Modern Fortran?",
so there are multiple correct solutions

@ Code can be obtained by cloning the git repo
https://github.com/alexpacheco/Molecular-Dynamics.git:

@ md-orig.f90 is the original code that you should begin working on (this is the
same code that was shown in todays slides)

@ There is no "correct solution", however there are multiple solutions
md-v{1-5}.f90 based on various concepts presented.

@ It’s entirely up to you to decide which solution you want to arrive at.

o Compare the results of your edited code with that of md-v0.out. If the results are
not the same, debug your code.



https://github.com/alexpacheco/Molecular-Dynamics.git

Calculate Area and Circumference

@ Write a code to read a radius from standard input and calculate area and
circumference of a circle of that radious

Algorithm 1 Pseudo code for calculating area and circumference
program AREACIRCUM
Define 7
7 ¢<— some number

a = mr?

c=2nr
end program AREACIRCUM




Roots of Quadratic Equation

@ Solve the quadratic equation az? + bz + ¢ = 0

_ b /(0 ~ dac)
2a

Algorithm 2 Pseudo Code for Solving Quadratic Equation
program ROOTS
read a, b, ¢ from standard input
d <+ b + dac
— (=b++Vd)/2a and z + (—b —\/d)/2a

end program ROOTS




Fibonacci Numbers

o In mathematical terms, the sequence F), of Fibonacci numbers is defined by the
recurrence relation
[T :Fn71+Fn72a

with seed values
FO = O, F1 =1.

@ Calculate the first n Fibonacci Numbers.

Algorithm 3 Pseudo Code to calculate sequence of Fibinacci Numbers
program FIBONACCI
n < anumber > 5
fO+0, f1+1
doi+2---n
fn<+< fO+ f1, fO <« f1, fn <« f1
end do
end program FIBONACCI




@ Calculate factorial and double factorial of a number

Algorithm 4 Pseudo Code for Factorial
program FACTORIAL
n 4— a number
doit+n,n—1n—2---1
f=1Fxi
end do
end program FACTORIAL




Calculate GCD & LCM 1

o In mathematics, the greatest common divisor (gcd) of two or more integers,
when at least one of them is not zero, is the largest positive integer that divides
the numbers without a remainder.

o Using Euclid’s algorithm
gcd(a,0) = a
gcd(a, b) = ged(b, a%b)

o In arithmetic and number theory, the least common multiple of two integers a
and b is the smallest positive integer that is divisible by both a and b.

|a-b|
ged(a, b)

lem(a,b) =




Calculate GCD & LCM 11

Algorithm 5 Pseudo Code to calculate ged
program GCDLCM
a, b < two integers
do while b # 0
t v, v+ uhv, u+—t
end do
ged +— |ul
lem < |a - b|/gcd
end program GCDLCM




Calculate pi by Numerical Integration I

@ We know that

Lg0
/0 7(1+x2) dr=m

@ So numerically, we can
approxiate pi as the sum of a
number of rectangles

=
x
+
-
= 20
e
b

F(x)

F(z)Az = 7

N
=0

Meadows et al, A “hands-on”
introduction to OpenMP,
SC09




Calculate pi by Numerical Integration II

Algorithm 6 Pseudo Code for Calculating Pi

program CALCULATE_PI
step < 1/n
sum < 0
doi<0---n

x < (i + 0.5) x step; sum < sum +4/(1 + z2?)

end do
P — sum * step

end program
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SAXPY

o SAXPY is a common operation in computations with vector processors included
as part of the BLAS routines

Yy <—oar+y
@ Write a SAXPY code to multiply a vector with a scalar.

Algorithm 7 Pseudo Code for SAXPY
program SAXPY
n 4— some large number
z(1 : n) < some number say, 1
y(1 : n) < some other number say, 2
a <— some other number ,say, 3
doi<1---n
Yi < Yi T ax*xx;
end do
end program SAXPY




Matrix Multiplication I

@ Most Computational code involve matrix operations such as matrix
multiplication.

@ Consider a matrix C which is a product of two matrices A and B:
Element i,j of C is the dot product of the i*" row of A and j* column of B
@ Write a MATMUL code to multiple two matrices.

|
[

Ole= 7|7 | m
| |
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Matrix Multiplication II

Algorithm 8 Pseudo Code for MATMUL
program MATMUL
m, n < some large number < 1000
Define a1, b, Crnm
Qij (*’Lﬂ’],blj (*Zlfj;cij ~0
doi+1---m
doj<1---m
Cij — Z::l a; k * bkﬂ‘
end do
end do
end program MATMUL
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