
Modern Fortran Programming I

Alexander B. Pacheco
LTS Research Computing

June 1, 2015

http://researchcomputing.lehigh.edu

Outline

1 Introduction

2 Basics

3 Control Constructs
Conditionals
Switches
Loops

4 Input and Output

5 Exercise

2 / 99

Introduction

What is Fortran?

Fortran is a general-purpose, imperative programming language that is especially
suited to numeric computation and scientific computing.
Originally developed by IBM for scientific and engineering applications.
The name Fortran is derived from The IBM Mathematical Formula Translating
System.
It was one of the first widely used "high-level" languages, as well as the first
programming language to be standardized.
It is still the premier language for scientific and engineering computing
applications.

4 / 99

Many Flavors of Fortran

FORTRAN — first released by IBM in 1956
FORTRAN II — released by IBM in 1958
FORTRAN IV — released in 1962, standardized
FORTRAN 66 — appeared in 1966 as an ANSI standard
FORTRAN 77 — appeared in 1977, structured features
Fortran 90 — 1992 ANSI standard, free form, modules
Fortran 95 — a few extensions
Fortran 2003 — object oriented programming
Fortran 2008 — a few extensions

The correct spelling of Fortran for 1992 ANSI standard and later (sometimes called
Modern Fortran) is "Fortran". Older standards are spelled as "FORTRAN".

5 / 99

Why Learn Fortran?

Fortran was designed by, and for, people who wanted raw number crunching
speed.
There’s a great deal of legacy code and numerical libraries written in Fortran,
attempts to rewrite that code in a more "stylish" language result in programs that
just don’t run as fast.
Fortran is the primary language for some of the most intensive supercomputing
tasks, such as

astronomy,
weather and climate modeling,
numerical linear algebra and libraries,
computational engineering (fluid dynamics),
computational science (chemistry, biology, physics),
computational economics, etc.

How many of you are handed down Fortran code that you are expected to further
develop?

6 / 99

Why learn Modern Fortran and not FORTRAN?

FORTRAN is a fixed source format dating back to the use of punch cards.
The coding style was very restrictive

Max 72 columns in a line with
first column reserved for comments indicated by a character such as c or *,
the second through fifth columns reserved for statement labels,
the sixth column for continuation indicator, and
columns 7 through 72 for statements.
Variable names can consists of up to 6 alphanumeric characters (a-z,0-9)

Cannot process arrays as a whole, need to do it element by element.
Cannot allocate memory dynamically.

7 / 99

FORTRAN 77 Example

SAXPY Code

C234567890123456789012345678901234567890123456789012345678901234567890
program test
integer n
parameter(n=100)
real alpha, x(n), y(n)

alpha = 2.0
do 10 i = 1,n

x(i) = 1.0
y(i) = 2.0

10 continue

call saxpy(n,alpha,x,y)

return
end

subroutine saxpy(n, alpha, x, y)
integer n
real alpha, x(*), y(*)

c
c Saxpy: Compute y := alpha*x + y,
c where x and y are vectors of length n (at least).
c

do 20 i = 1, n
y(i) = alpha*x(i) + y(i)

20 continue

return
end

8 / 99

Why Learn Modern Fortran?

Free-format source code with a maximum of 132 characters per line,
Variable names can consists of up to 31 alphanumeric characters (a-z,0-9) and
underscores (_),
Dynamic memory allocation and Ability to operate on arrays (or array sections)
as a whole,
generic names for procedures, optional arguments, calls with keywords, and
many other procedure call options,
Recursive procedures and Operator overloading,
Structured data or derived types,
Object Oriented Programming.
See http://en.wikipedia.org/wiki/Fortran#Obsolescence_
and_deletions for obsolete and deleted FORTRAN 77 features in newer
standards.

9 / 99

http://en.wikipedia.org/wiki/Fortran#Obsolescence_and_deletions
http://en.wikipedia.org/wiki/Fortran#Obsolescence_and_deletions

FORTRAN 90 Example

SAXPY Code

program test

implicit none
integer, parameter :: n = 100
real :: alpha, x(n), y(n)

alpha = 2.0
x = 1.0
y = 2.0

call saxpy(n,alpha,x,y)

end program test

subroutine saxpy(n, alpha, x, y)
implicit none
integer :: n
real :: alpha, x(*), y(*)

!
! Saxpy: Compute y := alpha*x + y,
! where x and y are vectors of length n (at least).
!

y(1:n) = alpha*x(1:n) + y(1:n)

end subroutine saxpy

10 / 99

Major Differences with C

No standard libraries: No specific libraries have to be loaded explicitly for I/O
and math.
Implicit type declaration: In Fortran, variables of type real and integer may be
declared implicitly, based on their first letter. This behaviour is not recommended
in Modern Fortran.
Arrays vs Pointers: Multi-dimension arrays are supported (arrays in C are
one-dimensional) and therefore no vector or array of pointers to rows of a
matrices have to be constructed.
Call by reference: Parameters in function and subroutine calls are all passed by
reference. When a variable from the parameter list is manipulated, the data
stored at that address is changed, not the address itself. Therefore there is no
reason for referencing and de-referencing of addresses (as commonly seen in C).

11 / 99

Basics

Fortran Source Code I

Fortran source code is in ASCII text and can be written in any plain-text editor
such as vi, emacs, etc.
For readability and visualization use a text editor capable of syntax highlighting
and source code indentation.
Fortran source code is case insensitive i.e. PROGRAM is the same as Program.
Using mixed case for statements and variables is not considered a good
programming practice. Be considerate to your collaborators who will be
modifying the code.
Some Programmers use uppercase letters for Fortran keywords with rest of the
code in lowercase while others (like me) only use lower case letters.
Use whatever convention you are comfortable with and be consistent throughout.
The general structure of a Fortran program is as follows

13 / 99

Fortran Source Code II

PROGRAM name
IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END PROGRAM name

1 A Fortran program starts with the keyword PROGRAM followed by program name,
2 This is followed by the IMPLICIT NONE statement (avoid use of implicit type declaration in

Fortran 90),
3 Followed by specification statements for various type declarations,
4 Followed by the actual execution statements for the program,
5 Any optional subprogram, and lastly
6 The END PROGRAM statement

14 / 99

Fortran Source Code III

A Fortran program consists of one or more program units.
PROGRAM
SUBROUTINE
FUNCTION
MODULE

The unit containing the PROGRAM attribute is often called the main program or
main.
The main program should begin with the PROGRAM keyword. This is however not
required, but it’s use if highly recommended.
A Fortran program should contain only one main program i.e. one PROGRAM

keyword and can contain one or more subprogram units such as SUBROUTINE,
FUNCTION and MODULE.
Every program unit, must end with a END keyword.

15 / 99

Basic Character Set:
the letters A· · ·Z and a· · · z
the digits 0· · · 9
the underscore character (_)
the special characters = : + blank - * / ()[] , . $ ’! ‘‘ % & ; < > ?

Identifier: name used to identify a variable, procedure, or any other user-defined
item.

cannot be longer than 31 characters
must be composed of letters, digits and underscores
first character must be a letter
case insensitive

16 / 99

Non I/O Keywords
allocatable allocate assign assignment block data

call case character common complex
contains continue cycle data deallocate
default do double precision else else if

elsewhere end block data end do end function end if
end interface end module end program end select end subroutine

end type end where entry equivalence exit
external function go to if implicit

in inout integer intent interface
intrinsic kind len logical module
namelist nullify only operator optional

out parameter pause pointer private
program public real recursive result
return save select case stop subroutine
target then type type() use
Where While

I/O Keywords
backspace close endfile format inquire

open print read rewind Write

17 / 99

Simple I/O

Any program needs to be able to read input and write output to be useful and
portable.
In Fortran, the print command provides the most simple form of writing to
standard output while,
the read command provides the most simple form of reading input from standard
input
print *, <var1> [, <var2> [, ...]]

read *, <var1> [, <var2> [, ...]]

The ∗ indicates that the format of data read/written is unformatted.
In later sections, we will cover how to read/write formatted data and file
operations.
variables to be read or written should be separated by a comma (,).

18 / 99

Your first code in Fortran

Open a text editor and create a file helloworld.f90 containing the following lines
program hello
print *, ’Hello World!’

end program hello

The standard extension for Fortran source files is .f90, i.e., the source files are
named <name>.f90.
The .f extension implies fixed format source or FORTRAN 77 code.

19 / 99

Compiling Fortran Code

To execute a Fortran program, you need to compile it to obtain an executable.
Almost all *NIX system come with GCC compiler installed. You might need to
install the Fortran (gfortran) compiler if its not present.
Command to compile a fortran program
<compiler> [flags] [-o executable] <source code>

The [...] is optional. If you do not specify an executable, then the default
executable is a.out

altair:Exercise apacheco$ gfortran helloworld.f90
altair:Exercise apacheco$./a.out
Hello World!

Other compilers available on our clusters are Intel (ifort) and Portland Group
(pgf90) compilers.
ifort -o helloworld helloworld.f90; ./helloworld

20 / 99

Comments

To improve readability of the code, comments should be used liberally.
A comment is identified by an exclamation mark or bang (!), except in a
character string.
All characters after ! upto the end of line is a comment.
Comments can be inline and should not have any Fortran statements following it

program hello
! A simple Hello World code
print *, ’Hello World!’ ! Print Hello World to screen

! This is an incorrect comment if you want Hello World to print to screen ! print

*, ’Hello World!’
end program hello

21 / 99

Fortran Data Types

Fortran provides five intrinsic data types
INTEGER: exact whole numbers
REAL: real, fractional numbers
COMPLEX: complex, fractional numbers
LOGICAL: boolean values
CHARACTER: strings

and allows users to define additional types.
The REAL type is a single-precision floating-point number.
The COMPLEX type consists of two reals (most compilers also provide a
DOUBLE COMPLEX type).
FORTRAN also provides DOUBLE PRECISION data type for double precision
REAL. This is obsolete but is still found in several programs.

22 / 99

Explicit and Implicit Typing

For historical reasons, Fortran is capable of implicit typing of variables.

ABCDEFGH︸ ︷︷ ︸
REAL

INTEGER︷ ︸︸ ︷
IJKLMN OPQRSTUVWXY Z︸ ︷︷ ︸

REAL

You might come across old FORTRAN program containing
IMPLICIT REAL*8(a-h,o-z) or IMPLICIT DOUBLE PRECISION (a-h,o-z).
It is highly recommended to explicitly declare all variable and avoid implict
typing using the statement IMPLICIT NONE.
The IMPLICIT statement must precede all variable declarations.

23 / 99

Variables

Variables are the fundamental building blocks of any program.
A variable is nothing but a name given to a storage area that our programs can
manipulate.
Each variable should have a specific type,

which determines the size and layout of the variable’s memory;
the range of values that can be stored within that memory; and
the set of operations that can be applied to the variable.

A variable name may consist of up to 31 alphanumeric characters and
underscores, of which the first character must be a letter.
Names must begin with a letter and should not contain a space.
Allowed names: a, compute_force, qed123
Invalid names: 1a, a thing, $sign

Type Description
Integer It can hold only integer values.
Real It stores the floating point numbers.
Complex It is used for storing complex numbers.
Logical It stores logical Boolean values.
Character It stores characters or strings.

24 / 99

Constants

The constants refer to the fixed values that the program cannot alter during its
execution.
Constants can be of any of the basic data types
Literal Constants: has a value but no name

Type Example
Integer constants 0 1 -1 300 123456789
Real constants 0.0 1.0 -1.0 123.456 7.1E+10 -52.715E-30

Complex constants (0.0, 0.0) (-123.456E+30, 987.654E-29)
Logical constants .true. .false.

Character constants "PQR" "a" "23’abc$%#@!"
Named Constants:

has a value as well as a name.
should be declared at the beginning of a program or procedure, indicating its name and type.
are declared with the parameter attribute

25 / 99

Variable Declarations I

Variables must be declared before they can be used.
In Fortran, variable declarations must precede all executable statements.
To declare a variable, preface its name by its type.
TYPE Variable

A double colon may follow the type.
TYPE[, attributes] :: Variable

This is the new form and is recommended for all declarations. If attributes need
to be added to the type, the double colon format must be used.
A variable can be assigned a value at its declaration.

26 / 99

Variable Declarations II

Numeric Variables:
INTEGER :: i, j = 2
REAL :: a, b = 4.d0
COMPLEX :: x, y

In the above examples, the value of j and b are set at compile time and can be
changed later.
If you want the assigned value to be constant that cannot change subsequently,
add the attribute PARAMETER

INTEGER, PARAMETER :: j = 2
REAL, PARAMETER :: pi = 3.14159265
COMPLEX, PARAMETER :: ci = (0.d0,1.d0)

Logical: Logical variables are declared with the LOGICAL keyword
LOGICAL :: l, flag=.true.

Character: Character variables are declared with the CHARACTER type; the length
is supplied via the keyword LEN.

27 / 99

Variable Declarations III

The length is the maximum number of characters (including space) that will be
stored in the character variable.
If the LEN keyword is not specified, then by default LEN=1 and only the first
character is saved in memory.
CHARACTER :: ans = ’yes’ ! stored as y not yes
CHARACTER(LEN=10) :: a

FORTRAN programmers: avoid the use of CHARACTER*10 notation.

28 / 99

Array Variables

Arrays (or matrices) hold a collection of different values at the same time.
Individual elements are accessed by subscripting the array.
Arrays are declared by adding the DIMENSION attribute to the variable type
declaration which can be integer, real, complex or character.
Usage: TYPE, DIMENSION(lbound:ubound):: variable_name

Lower bounds of one can be omitted
INTEGER, DIMENSION(1:106) :: atomic_number
REAL, DIMENSION(3, 0:5, -10:10) :: values
CHARACTER(LEN=3), DIMENSION(12) :: months

In Fortran, arrays can have upto seven dimension.
In contrast to C/C++, Fortran arrays are column major.
We’ll discuss arrays in more details tomorrow.

29 / 99

DATA Statments

In FORTRAN, a DATA statement may be used to initialize a variable or group of
variables.
It causes the compiler to load the initial values into the variables at compile time
i.e. a nonexecutable statment
General form
DATA varlist /varlist/ [, varlist /varlist/]

Example DATA a,b,c /1.,2.,3./

DATA statements can be used in Fortran but it is recommended to to eliminate this
statement by initializing variables in their declarations.
In Fortran 2003, variables may be initialized with intrinsic functions (some
compilers enable this in Fortran 95)
REAL, PARAMETER :: pi = 4.0*atan(1.0)

30 / 99

KIND Parameter I

In FORTRAN, types could be specified with the number of bytes to be used for
storing the value:

real*4 - uses 4 bytes, roughly ±10−38 to ±1038.
real*8 - uses 8 bytes, roughly ±10−308 to ±10308.
complex*16 - uses 16 bytes, which is two real*8 numbers.

Fortran 90 introduced kind parameters to parameterize the selection of different
possible machine representations for each intrinsic data types.
The kind parameter is an integer which is processor dependent.
There are only 2(3) kinds of reals: 4-byte, 8-byte (and 16-byte), respectively
known as single, double (and quadruple) precision.
The corresponding kind numbers are 4, 8 and 16 (most compilers)

31 / 99

KIND Parameter II

KIND Size (Bytes) Data Type
1 1 integer, logical, character (default)
2 2 integer, logical
4a 4 integer, real, logical, complex
8 8 integer, real, logical, complex

16 16 real, complex

adefault for all data types except character

You might come across FORTRAN codes with variable declarations using
integer*4, real*8 and complex*16 corresponding to kind=4 (integer) and
kind=8 (real and complex).
The value of the kind parameter is usually not the number of decimal digits of
precision or range; on many systems, it is the number of bytes used to represent
the value.
The intrinsic functions selected_int_kind and selected_real_kind may be
used to select an appropriate kind for a variable or named constant.

32 / 99

KIND Parameter III

selected_int_kind(R) returns the kind value of the smallest integer type that
can represent all values ranging from −10R (exclusive) to 10R (exclusive)
selected_real_kind(P,R) returns the kind value of a real data type with
decimal precision of at least P digits, exponent range of at least R. At least one of
P and R must be specified, default R is 308.

program kind_function

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer,parameter :: ip = selected_int_kind(15)
integer(kind=4) :: i
integer(kind=8) :: j
integer(ip) :: k
real(kind=4) :: a
real(kind=8) :: b
real(dp) :: c

print ’(a,i2,a,i4)’, ’Kind of i = ’,kind(i), ’ with range =’, range(i)
print ’(a,i2,a,i4)’, ’Kind of j = ’,kind(j), ’ with range =’, range(j)
print ’(a,i2,a,i4)’, ’Kind of k = ’,kind(k), ’ with range =’, range(k)
print ’(a,i2,a,i2,a,i4)’, ’Kind of real a = ’,kind(a),&

’ with precision = ’, precision(a),&
’ and range =’, range(a)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real b = ’,kind(b),&

33 / 99

KIND Parameter IV

’ with precision = ’, precision(b),&
’ and range =’, range(b)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real c = ’,kind(c),&
’ with precision = ’, precision(c),&
’ and range =’, range(c)

print *, huge(i),kind(i)
print *, huge(j),kind(j)
print *, huge(k),kind(k)

end program kind_function

[apacheco@qb4 Exercise] ./kindfns
Kind of i = 4 with range = 9
Kind of j = 8 with range = 18
Kind of k = 8 with range = 18
Kind of real a = 4 with precision = 6 and range = 37
Kind of real b = 8 with precision = 15 and range = 307
Kind of real c = 8 with precision = 15 and range = 307

34 / 99

Operators

Fortran defines a number of operations on each data type.

Arithmetic Operators

+ : addition

- : subtraction

* : multiplication

/ : division

** : exponentiation

Relational Operators (FORTRAN versions)

== : equal to (.eq.)

/= : not equal to (.ne.)

< : less than (.lt.)

<= : less than or equal to (.le.)

> : greater than (.gt.)

>= : greater than or equal to (.ge.)

Logical Expressions

.AND. intersection

.OR. union

.NOT. negation

.EQV. logical equivalence

.NEQV. exclusive or

Character Operators

// : concatenation

35 / 99

Operator Evaluations

In Fortran, all operator evaluations on variables is carried out from left-to-right.
Arithmetic operators have a highest precedence while logical operators have the
lowest precedence
The order of operator precedence can be changed using parenthesis, ’(’ and ’)’
In Fortran, a user can define his/her own operators.
User defined monadic operator has a higher precedence than arithmetic
operators, while
dyadic operators has a lowest precedence than logical operators.

36 / 99

Operator Precedence

Operator Precedence Example
expression in () Highest (a+b)

user-defined monadic - .inverse.a
** - 10**4

* or / - 10*20
monadic + or - - -5
dyadic + or - - 1+5

// - str1//str2
relational operators - a > b

.not. - .not.allocated(a)
.and. - a.and.b
.or. - a.or.b

.eqv. or .neqv. - a.eqv.b
user defined dyadic Lowest x.dot.y

37 / 99

Expressions

An expression is a combination of one or more operands, zero or more operators,
and zero or more pairs of parentheses.
There are three kinds of expressions:

An arithmetic expression evaluates to a single arithmetic value.
A character expression evaluates to a single value of type character.
A logical or relational expression evaluates to a single logical value.

Examples:

x + 1.0
97.4d0
sin(y)
x*aimag(cos(z+w))
a .and. b
’AB’ // ’wxy’

38 / 99

Statements I

A statement is a complete instruction.
Statements may be classified into two types: executable and non-executable.
Non-executable statements are those that the compiler uses to determine various
fixed parameters such as module use statements, variable declarations, function
interfaces, and data loaded at compile time.
Executable statements are those which are executed at runtime.
A statements is normally terminated by the end-of-line marker.
If a statement is too long, it may be continued by the ending the line with an
ampersand (&).
Max number of characters (including spaces) in a line is 132 though it’s standard
practice to have a line with up to 80 characters. This makes it easier for file
editors to display code or print code on paper for reading.
Multiple statements can be written on the same line provided the statements are
separated by a semicolon.

39 / 99

Statements II

Examples:
force = 0d0 ; pener = 0d0
do k = 1, 3

r(k) = coord(i,k) - coord(j,k)

Assignment statements assign an expression to a quantity using the equals sign
(=)
The left hand side of the assignment statement must contain a single variable.
x+ 1.0 = y is not a valid assignment statement.

40 / 99

Intrinsic Functions

Fortran provide a large set of intrinsic functions to implement a wide range of
mathematical operations.
In FORTRAN code, you may come across intrinsic functions which are prefixed
with i for integer variables, d for double precision, c for complex single
precision and cd for complex double precision variables.
In Modern Fortran, these functions are overloaded, i.e. they can carry out
different operations depending on the data type.
For example: the abs function equates to

√
a2 for integer and real numbers and√

<2 + =2 for complex numbers.

41 / 99

Arithmetic Functions

Function Action Example
INT conversion to integer J=INT(X)

REAL conversion to real X=REAL(J)
return real part of complex number X=REAL(Z)

DBLEa convert to double precision X=DBLE(J)
CMPLX conversion to complex A=CMPLX(X[,Y])
AIMAG return imaginary part of complex number Y=AIMAG(Z)

ABS absolute value Y=ABS(X)
MOD remainder when I divided by J K=MOD(I,J)

CEILING smallest integer ≥ to argument I=CEILING(a)
FLOOR largest integer ≤ to argument I=FLOOR(a)
MAX maximum of list of arguments A=MAX(C,D)
MIN minimum of list of arguments A=MIN(C,D)

SQRT square root Y=SQRT(X)
EXP exponentiation Y=EXP(X)
LOG natural logarithm Y=LOG(X)

LOG10 logarithm to base 10 Y=LOG10(X)

ause real(x,kind=8) instead

42 / 99

Trignometric Functions

Function Action Example
SIN sine X=SIN(Y)
COS cosine X=COS(Y)
TAN tangent X=TAN(Y)
ASIN arcsine X=ASIN(Y)
ACOS arccosine X=ACOS(Y)
ATAN arctangent X=ATAN(Y)
ATAN2 arctangent(a/b) X=ATAN2(A,B)
SINH hyperbolic sine X=SINH(Y)
COSH hyperbolic cosine X=COSH(Y)
TANH hyperbolic tangent X=TANH(Y)

hyperbolic functions are not defined for complex argument

43 / 99

Character Functions

Function Description
len(c) length
len_trim(c) length of c if it were trimmed
lge(s1,s2) returns .true. if s1 follows or is equal to s2 in lexical order
lgt(s1,s2) returns .true. if s1 follows s1 in lexical order
lle(s1,s2) returns .true. if s2 follows or is equal to s1 in lexical order
llt(s1,s2) returns .true. if s2 follows s1 in lexical order
adjustl(s) returns string with leading blanks removed and

same number of trailing blanks added
adjustr(s) returns string with trailing blanks removed and

same number of leading blanks added
repeat(s,n) concatenates string s to itself n times
scan(s,c) returns the integer starting position of string c within string s
trim(c) trim trailing blanks from c

44 / 99

Array Intrinsic Functions

size(x[,n]) The size of x (along the nth dimension, optional)

sum(x[,n]) The sum of all elements of x (along the nth dimension, optional)

sum(x) =
∑

i,j,k,··· xi,j,k,···

product(x[,n]) The product of all elements of x (along the nth dimension, optional)

prod(x) =
∏

i,j,k,··· xi,j,k,···

transpose(x) Transpose of array x: xi,j ⇒ xj,i

dot_product(x,y) Dot Product of arrays x and y:
∑

i xi ∗ yi
matmul(x,y) Matrix Multiplication of arrays x and y which can be 1 or 2 dimensional arrays:

zi,j =
∑

k xi,k ∗ yk,j
conjg(x) Returns the conjugate of x: a+ ıb⇒ a− ıb

45 / 99

Simple Temperature Conversion Problem

Write a simple program that
1 Converts temperature from celsius to fahrenheit
2 Converts temperature from fahrenheit to celsius

program temp

implicit none
real :: tempC, tempF

! Convert 10C to fahrenheit

tempF = 9 / 5 * 10 + 32

! Convert 40F to celsius

tempC = 5 / 9 * (40 - 32)

print *, ’10C = ’, tempF, ’F’
print *, ’40F = ’, tempC, ’C’

end program temp

altair:Exercise apacheco$ gfortran simple.f90
altair:Exercise apacheco$./a.out
10C = 42.0000000 F
40F = 0.00000000 C

So what went wrong? 10C = 50F and 40F = 4.4C

46 / 99

Type Conversion I

In computer programming, operations on variables and constants return a result
of the same type.
In the temperature code, 9/5 = 1 and 5/9 = 0. Division between integers is an
integer with the fractional part truncated.
In the case of operations between mixed variable types, the variable with lower
rank is promoted to the highest rank type.

Variable 1 Variable 2 Result
Integer Real Real
Integer Complex Complex
Real Double Precision Double Precision
Real Complex Complex

47 / 99

Type Conversion II

As a programmer, you need to make sure that the expressions take type
conversion into account

program temp

implicit none
real :: tempC, tempF

! Convert 10C to fahrenhiet

tempF = 9. / 5. * 10 + 32

! Convert 40F to celsius

tempC = 5. / 9. * (40 - 32)

print *, ’10C = ’, tempF, ’F’
print *, ’40F = ’, tempC, ’C’

end program temp

altair:Exercise apacheco$ gfortran temp.f90
altair:Exercise apacheco$./a.out
10C = 50.0000000 F
40F = 4.44444466 C

The above example is not a good programming practice.
10, 40 and 32 should be written as real numbers (10., 40. and 32.) to stay
consistent.

48 / 99

Exercise

Write a code to read a radius from standard input and calculate area and
circumference of a circle of that radious

Algorithm 1 Pseudo code for calculating area and circumference
program AREACIRCUM

Define π
r ← some number
a = πr2

c = 2πr
end program AREACIRCUM

49 / 99

Control Constructs

Control Constructs

A Fortran program is executed sequentially
program somename
variable declarations
statement 1
statement 2
· · ·

end program somename

Control Constructs change the sequential execution order of the program
1 Conditionals: IF
2 Loops: DO
3 Switches: SELECT/CASE
4 Branches: GOTO (obsolete in Fortran 95/2003, use CASE instead)

51 / 99

If Statement

The general form of the if statement
if (expression)statement

When the if statement is executed, the logical expression is evaluated.
If the result is true, the statement following the logical expression is executed;
otherwise, it is not executed.
The statement following the logical expression cannot be another if statement.
Use the if-then-else construct instead.
if (value < 0)value = 0

52 / 99

If-then-else Construct I

The if-then-else construct permits the selection of one of a number of blocks
during execution of a program
The if-then statement is executed by evaluating the logical expression.
If it is true, the block of statements following it are executed. Execution of this
block completes the execution of the entire if construct.
If the logical expression is false, the next matching else if, else or end if

statement following the block is executed.
if (expression 1) then

executable statements
else if (expression 2) then

executable statements
else if · · ·

.

.

.
else

executable statements
end if

53 / 99

If-then-else Construct II

Examples:
if (x < 50) then

GRADE = ’F’
else if (x >= 50 .and. x < 60) then

GRADE = ’D’
else if (x >= 60 .and. x < 70) then

GRADE = ’C’
else if (x >= 70 .and. x < 80) then

GRADE = ’B’
else

GRADE = ’A’
end if

The else if and else statements and blocks may be omitted.
If else is missing and none of the logical expressions are true, the if-then-else

construct has no effect.
The end if statement must not be omitted.
The if-then-else construct can be nested and named.

no else if

[outer_name:] if (expression) then
executable statements

else
executable statements
[inner_name:] if (expression) then

executable statements
end if [inner_name]

end if [outer_name]

no else

if (expression) then
executable statements

else if (expression) then
executable statements

else if (expression) then
executable statements

end if

54 / 99

Case Construct I

The case construct permits selection of one of a number of different block of
instructions.
The value of the expression in the select case should be an integer or a
character string.
[case_name:] select case (expression)

case (selector)
executable statement

case (selector)
executable statement

case default
executable statement

end select [case_name]

The selector in each case statement is a list of items, where each item is either
a single constant or a range of the same type as the expression in the
select case statement.
A range is two constants separated by a colon and stands for all the values
between and including the two values.
The case default statement and its block are optional.

55 / 99

Case Construct II

The select case statement is executed as follows:
1 Compare the value of expression with the case selector in each case. If a match is found,

execute the following block of statements.
2 If no match is found and a case default exists, then execute those block of statements.

Notes
The values in selector must be unique.
Use case default when possible, since it ensures that there is something to do
in case of error or if no match is found.
case default can be anywhere in the select case construct. The preferred
location is the last location in the case list.

56 / 99

Case Construct III

Example for character case selector
select case (traffic_light)

case ("red")
print *, "Stop"

case ("yellow")
print *, "Caution"

case ("green")
print *, "Go"

case default
print *, "Illegal value: ", traffic_light

end select

Example for integer case selector
select case (score)

case (50 : 59)
GRADE = "D"

case (60 : 69)
GRADE = "C"

case (70 : 79)
GRADE = "B"

case (80 :)
GRADE = "A"

case default
GRADE = "F"

end select

57 / 99

Exercise

Solve the quadratic equation ax2 + bx+ c = 0

x =
−b±

√
(b2 − 4ac)

2a

Algorithm 2 Pseudo Code for Solving Quadratic Equation
program ROOTS

read a, b, c from standard input
d← b2 + 4ac
x← (−b+

√
d)/2a and x← (−b−

√
d)/2a

end program ROOTS

58 / 99

Do Construct I

The looping construct in fortran is the do construct.
The block of statements called the loop body or do construct body is executed
repeatedly as indicated by loop control.
A do construct may have a construct name on its first statement
[do_name:] do loop_control
execution statements

end do [do_name]

There are two types of loop control:
1 Counting: a variable takes on a progression of integer values until some limit is reached.

� variable = start, end[, stride]
� stride may be positive or negative integer, default is 1 which can be omitted.

2 General: a loop control is missing

Before a do loop starts, the expression start, end and stride are evaluated. These
values are not re-evaluated during the execution of the do loop.
stride cannot be zero.
If stride is positive, this do counts up.

1 The variable is set to start

59 / 99

Do Construct II

2 If variable is less than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is greater than end, the do loop completes, else repeat steps 2 and 3

If stride is negative, this do counts down.
1 The variable is set to start
2 If variable is greater than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is less than end, the do loop completes, else repeat steps 2 and 3

60 / 99

Do Construct: Nested I

The exit statement causes termination of execution of a loop.
If the keyword exit is followed by the name of a do construct, that named loop
(and all active loops nested within it) is exited and statements following the
named loop is executed.
The cycle statement causes termination of the execution of one iteration of a
loop.
The do body is terminated, the do variable (if present) is updated, and control is
transferred back to the beginning of the block of statements that comprise the do

body.
If the keyword cycle is followed by the name of a construct, all active loops
nested within that named loop are exited and control is transferred back to the
beginning of the block of statements that comprise the named do construct.

61 / 99

Do Construct: Nested II

program nested_doloop

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer :: i,j
real(dp) :: x,y,z,pi

pi = 4d0*atan(1.d0)

outer: do i = 0,180,45
inner: do j = 0,180,45

x = real(i)*pi/180d0
y = real(j)*pi/180d0
if (j == 90) cycle inner
z = sin(x) / cos(y)
print ’(2i6,3f12.6)’, i,j,x,y,z

end do inner
end do outer

end program nested_doloop

[apacheco@qb4 Exercise] ./nested
0 0 0.000000 0.000000 0.000000
0 45 0.000000 0.785398 0.000000
0 135 0.000000 2.356194 -0.000000
0 180 0.000000 3.141593 -0.000000

45 0 0.785398 0.000000 0.707107
45 45 0.785398 0.785398 1.000000
45 135 0.785398 2.356194 -1.000000
45 180 0.785398 3.141593 -0.707107
90 0 1.570796 0.000000 1.000000
90 45 1.570796 0.785398 1.414214
90 135 1.570796 2.356194 -1.414214
90 180 1.570796 3.141593 -1.000000
135 0 2.356194 0.000000 0.707107
135 45 2.356194 0.785398 1.000000
135 135 2.356194 2.356194 -1.000000
135 180 2.356194 3.141593 -0.707107
180 0 3.141593 0.000000 0.000000
180 45 3.141593 0.785398 0.000000
180 135 3.141593 2.356194 -0.000000
180 180 3.141593 3.141593 -0.000000

62 / 99

Do Construct: General

The General form of a do construct is
[do_name:] do
executable statements

end do [do_name]

The executable statements will be executed indefinitly.
To exit the do loop, use the exit or cycle statement.
The exit statement causes termination of execution of a loop.
The cycle statement causes termination of the execution of one iteration of a
loop.
finite: do

i = i + 1
inner: if (i < 10) then

print *, i
cycle finite

end if inner
if (i > 100) exit finite

end do finite

63 / 99

Do While Construct

If a condition is to be tested at the top of a loop, a do ... while loop can be used
[do_name:] do while (expression)
executable statements

end do [do_name]

The loop only executes if the logical expression evaluates to .true.

finite: do while (i <= 100)
i = i + 1
inner: if (i < 10) then

print *, i
end if inner

end do finite

finite: do
i = i + 1
inner: if (i < 10) then

print *, i
cycle finite

end if inner
if (i > 100) exit finite

end do finite

64 / 99

Exercise I

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

Fn = Fn−1 + Fn−2,

with seed values
F0 = 0;F1 = 1.

Calculate the first n Fibonacci Numbers.

Algorithm 3 Pseudo Code to calculate sequence of Fibinacci Numbers
program FIBONACCI

n← a number > 5
f0← 0, f1← 1
do i← 2 · · ·n

fn← f0 + f1, f0← f1, fn← f1
end do

end program FIBONACCI

65 / 99

Exercise II

Calculate factorial and double factorial of a number

Algorithm 4 Pseudo Code for Factorial
program FACTORIAL

n← a number
do i← n, n− 1, n− 2 · · · 1

f = f ∗ i
end do

end program FACTORIAL

66 / 99

Exercise III

In mathematics, the greatest common divisor (gcd) of two or more integers,
when at least one of them is not zero, is the largest positive integer that divides
the numbers without a remainder.
Using Euclid’s algorithm

gcd(a, 0) = a

gcd(a, b) = gcd(b, a%b)

In arithmetic and number theory, the least common multiple of two integers a
and b is the smallest positive integer that is divisible by both a and b.

lcm(a, b) =
| a · b |
gcd(a, b)

67 / 99

Exercise IV

Algorithm 5 Pseudo Code to calculate gcd
program GCDLCM

a, b← two integers
do while b 6= 0

t← v, v ← u%v, u← t
end do
gcd← |u|
lcm← |a · b|/gcd

end program GCDLCM

68 / 99

Exercise V

Calculate pi by Numerical Integration

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of a
number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A “hands-on”
introduction to OpenMP,
SC09

69 / 99

Exercise VI

Algorithm 6 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program

70 / 99

Input and Output

Input and Output Descriptors I

Input and output are accomplished by operations on files.
Files are identified by some form of file handle, in Fortran called the unit
number.
We have already encountered read and write command such as print *, and
read *,

Alternative commands for read and write are
read(unit,*)

write(unit,*)

There is no comma after the ’)’. FORTRAN allowed statements of the form
write(unit,*), which is not supported on some compilers such as IBM XLF.
Please avoid this notation in FORTRAN programs.
The default unit number 5 is associated with the standard input, and
unit number 6 is assigned to standard output.
You can replace unit with ? in which case standard input (5) and output (6) file
descriptors are used.

72 / 99

Input and Output Descriptors II

The second ? in read/write or the one in the print */read * corresponds to
unformatted input/output.
If I/O is formatted, then ? is replaced with
fmt=<format specifier>

73 / 99

File Operations I

A file may be opened with the statement
OPEN([UNIT=]un, FILE=fname [, options])

Commonly used options for the open statement are:
IOSTAT=ios: This option returns an integer ios; its value is zero if the statement
executed without error, and nonzero if an error occured.
ERR=label: label is the label of a statement in the same program unit. In the
event of an error, execution is transferred to this labelled statement.
STATUS=istat: This option indicates the type of file to be opened. Possible
values are:

old : the file specified by the file parameter must exist.
new : the file will be created and must not exist.

replace : the file will be created if it does not exist or if it exists, the file will be deleted and created i.e.
contents overwritten.

unknown : the file will be created if it doesn’t exist or opened if it exists without further processing.
scratch : file will exist until the termination of the executing program or until a close is executed on

that unit.

74 / 99

File Operations II

position=todo: This options specifies the position where the read/write marker
should be placed when opened. Possible values are:

rewind : positions the file at its initial point. Convenient for rereading data from file such as input
parameters.

append : positions the file just before the endfile record. Convenient while writing to a file that already
exists. If the file is new, then the position is at its initial point.

75 / 99

File Operations III

The status of a file may be tested at any point in a program by means of the
INQUIRE statement.
INQUIRE([UNIT=]un, options)

OR
INQUIRE(FILE=fname, options)

At least one option must be specified. Options include
IOSTAT=ios: Same use as open statement.
EXIST=lex: Returns whether the file exists in the logical variable lex

OPENED=Iop: Returns whether the file is open in the logical variable Iop

NUMBER=num: Returns the unit number associated with the file, or -1 if no number
is assigned to it. Generally used with the second form of the INQUIRE statement.
NAMED=isnamed: Returns whether the file has a name. Generally used with the
first form of the INQUIRE statement.
NAME=fname: Returns the name of the file in the character variable fname. Used
in conjunction with the NAMED option.

76 / 99

File Operations IV

READ=rd: Returns a string YES, NO, or UNKNOWN to the character variable rd

depending on whether the file is readable. If status cannot be determined, it
returns UNKNOWN.
WRITE=wrt: Similar to the READ option to test if a file is writable.
READWRITE=rdwrt: Similar to the READ option to test if a file is both readable and
writeable.

77 / 99

File Operations V

A file may be closed with the statement
CLOSE([UNIT=]un [, options])

Commonly used options for the close statement are:
IOSTAT=ios: Same use as open statement.
ERR=label: Same use as open statement.
STATUS=todo: What actions needs to be performed on the file while closing it.
Possible values are
keep : file will continue to exist after the close statement, default option except for scratch files.

delete : file will cease to exist after the close statement, default option for scratch files.

78 / 99

Reading and Writing Data I

The WRITE statement is used to write to a file.
Syntax for writing a list of variable, varlist, to a file associated with unit
number un
WRITE(un, options)varlist

The most common options for WRITE are:
FMT=label A format statement label specifier.
You can also specify the exact format to write the data to be discussed in a few
slides.
IOSTAT=ios Returns an integer indicating success or failure; zero if statement
executed with no erros and nonzero if an error occured.
ERR=label The label is a statement label to which the program should jump if an
error occurs.
The READ statement is used to read from a file.
Syntax for reading a list of variable, varlist, to a file associated with unit
number un

79 / 99

Reading and Writing Data II

READ(un, options)varlist

Options to the READ statement are the same as that of the WRITE statement with
one additional option,
END=label The label is a statement label to which the program should jump if
the end of file is detected.

80 / 99

List-Directed I/O I

The simplest method of getting data into and out of a program is list-directed I/O.
The data is read or written as a stream into or from specified variables either
from standard input or output or from a file.
The unit number associate with standard input is 5 while standard output is 6.
If data is read/written from/to standard input/output, then

the unit number, un can also be replaced with ∗,
use alternate form for reading and writing i.e. the read *, and print *, covered in an
earlier slide.
If data is unformatted i.e. plain ASCII characters, the option to write and read command is
∗

Example of list-directed output to standard output or to a file associated with unit
number 8
print *, a, b, c, arr
write(*,*) a, b, arr
write(6,*) a, b, c, arr
write(8,*) a, b, c, &
arr

81 / 99

List-Directed I/O II

Unlike C/C++, Fortran always writes an end-of-line marker at the end of the list
of item for any print or write statements.
Printing a long line with many variables may thus require continuations.
Example of list-directed input from standard output or to a file associated with
unit number 8
read *, a, b, c, arr
read(*,*) a, b, c, arr
read(5,*) a, b, c, arr
read(8,*) a, b, c, arr

When reading from standard input, the program will wait for a response from the
console.
Unless explicitly told to do so, no prompts to enter data will be printed. Very
often programmers use a print statement to let you know that a response is
expected.
print *, ’Please enter a value for the variable inp’
read *, inp

82 / 99

Formatted Input/Output I

List-directed I/O does not always print the results in a particularly readable form.
For example, a long list of variable printed to a file or console may be broken up
into multiple lines.
In such cases it is desirable to have more control over the format of the data to be
read or written.
Formatted I/O requires that the programmer control the layout of the data.
The type of data and the number of characters that each element may occupy
must be specified.

83 / 99

Formatted Input/Output II

A formatted data description must adhere to the generic form,
nCw.d

where
n is an integer constant that specifies the number of repititions (default 1 can be omitted),
C is a letter indicating the type of the data variable to be written or read,
w is the total number of spaces allocated to this variable, and,
d is the number of spaces allocated to the fractional part of the variable. Integers are padded
with zeros for a total width of w provided d ≤ w.
The decimal (.) and d designator are not used for integers, characters or logical data types.
Note that d designator has a different meaning for integers and is usually referred to as m to
avoid confusion.

Collectively, these designators are called edit descriptors.
The space occupied by an item of data or variable is called field.

84 / 99

Formatted Input/Output III
Data Type Edit Descriptor Examples Result

Integer nIw[.m] I5.5 00010
Reala (floating point) nFw.d F12.6 10.123456

Real (exponential) Ew.d[en]b E15.8 0.12345678E1
Real (engineering) ESw.dc ES12.3 50.123E-3

Character nAw A12 Fortran

aFor complex variables, use two appropriate real edit descriptors
ben is used when you need more than 2 digits in the exponent as in 100. E15.7e4 to represent 2.3 × 101021

cdata is printed in multiples of 1000

Control descriptors alter the input or output by addings blanks, new lines and
tabs.

Space nX add n spaces
tn tab to position n

Tabs tln tab left n positions
trn tab right n positions

New Line / Create a new line record

85 / 99

Format Statements I

Edit descriptors must be used in conjunction with a PRINT, WRITE or READ
statement.
In the simplest form, the format is enclosed in single quotes and parentheses as
as argument to the keyword.
print ’(I5,5F12.6)’, i, a, b, c, z ! complex z
write(6,’(2E15.8)’) arr1, arr2
read(5,’(2a)’) firstname, lastname

If the same format is to be used repeatedly or it is complicated, the FORMAT

statement can be used.
The FORMAT statement must be labeled and the label is used in the input/output
statement to reference it
label FORMAT(formlist)
PRINT label, varlist
WRITE(un, label) varlist
READ(un, label) varlist

86 / 99

Format Statements II

The FORMAT statements can occur anywhere in the same program unit. Most
programmers list all FORMAT statements immediately after the type declarations
before any executable statements.
10 FORMAT(I5,5F12.6)
20 FORMAT(2E15.8)
100 FORMAT(2a)

print 10, i, a, b, c, z ! complex z
write(6,20) arr1, arr2
read(5,100) firstname, lastname

87 / 99

Namelist I

Many scientific codes have a large number of input parameters.
Remembering which parameter is which and also the order in which they are to
read, make creating input files very tedious.
Fortran provides NAMELIST input simplify this situation.
In a NAMELIST, parameters are specified by name and value and can appear in any
order.
The NAMELIST is declared as a non-executable statement in the subprogram that
reads the input and the variables that can be specified in it are listed.
NAMELIST /name/ varlist

Namelists are read with a special form of the READ statement.
READ(un,[nml=]name)

88 / 99

Namelist II

The input file must follow a particular format:
begin with an ampersand followed by the name of the namelist (&name) and ends with a slash
(/),
variables are specified with an equals sign (=) between the variable name and its value,
only statis objects may be part of a namelist; i.e. dynamically allocated arrays, pointers and the
like are not permitted

For example, consider a program that declares a namelist as follows:
namelist/moldyn/natom,npartdim,tempK,nstep,dt

The corresponding input file can take the form
&moldyn
npartdim = 10
tempK = 10d0
nstep = 1000
dt = 1d-3
/

Note:
parameters may appear in any order in the input file, and
may be omitted if they are not needed i.e. they can take default values that is specified in the
program

89 / 99

Namelist III

The above namelist can be read with a single statement as in (other options to
READ statement can be added if needed)
READ(10, nml=moldyn)

To write the values of a namelist is similar
WRITE(20, nml=moldyn)

Namelist names and variables are case insensitive.
The namelist designator cannot have blanks
Arrays may be namelist variables, but all the values of the array must be listed
after the equals sign following its name
If any variable name is repeated, the final value is taken.
Namelist are convenient when you want to read different input for different types
of calculations within the same program.
Amber Molecular Dynamics package uses namelist to read input. The following
is the input file from Amber’s test directory.

90 / 99

Namelist IV

&cntrl
ntx=1, imin=5, ipb=1, inp=2, ntb=0,

/
&pb
npbverb=0, istrng=0, epsout=80.0, epsin=1.0, space=0.5,
accept=0.001, sprob=1.6, radiopt=1, dprob=1.6,

/

If multiple variables are listed on the same line, they need to be separated by a
comma (,) not semicolon(;)

91 / 99

Internal Read and Write I

Fortran allows a programmer to cast numeric types to character type and vice
versa.
The character variable functions as an internal file.
An internal write converts from numeric to character type, while
an internal read converts from character to numeric type.
This is useful feature particularly for writing output of arrays that are
dynamically allocated.
Example: Convert an integer to a character
CHARACTER(len=10) :: num
INTEGER :: inum
WRITE(NUM,’(A10)’) inum

92 / 99

Internal Read and Write II

Example: Convert an character to an integer
CHARACTER(len=10) :: num = "435"
INTEGER :: inum
READ(inum,’(I4)’) num

Example: Writing data when parameters are not known at compile time
CHARACTER(len=23) :: xx
CHARACTER(len=13) :: outfile
INTEGER :: natoms, istep
REAL :: time
REAL, ALLOCATABLE, DIMENSION(:) :: coords

natoms = 100 ; ALLOCATE(coords(natoms*3))

WRITE(xx,’(A,I5,A)’) ’(F12.6,’, 3*natoms, ’(2X,E15.8))’
WRITE(outfile,’(A8,I5.5,A4)’) ’myoutput’, istep, ’.dat’

OPEN(unit = 10, file = outfile)
WRITE(10, xx) time, coords(:)

93 / 99

End of Day 1

Thats all for Day 1
Any Question?
In the second part of the tutorial we will cover advanced topics:

1 Arrays: Dynamic Arrays, Array Conformation concepts, Array declarations and Operations,
etc.

2 Procedures: Modules, Subroutines, Functions, etc.
3 Object Oriented Concepts: Derived Type Data, Generic Procedures and Operator Overloading.

94 / 99

References

Fortran 95/2003 Explained, Michael Metcalf
Modern Fortran Explaned, Michael Metcalf
Guide to Fortran 2003 Programming, Walter S. Brainerd
Introduction to Programming with Fortran: with coverage of Fortran 90, 95,
2003 and 77, I. D. Chivers
Fortran 90 course at University of Liverpool,
http://www.liv.ac.uk/HPC/F90page.html

Introduction to Modern Fortran, University of Cambridge, http://www.
ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran

Scientific Programming in Fortran 2003: A tutorial Including Object-Oriented
Programming, Katherine Holcomb, University of Virginia.

95 / 99

http://www.liv.ac.uk/HPC/F90page.html
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/Fortran

Exercise

SAXPY

SAXPY is a common operation in computations with vector processors included
as part of the BLAS routines
y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 7 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY

97 / 99

Matrix Multiplication I

Most Computational code involve matrix operations such as matrix
multiplication.
Consider a matrix C which is a product of two matrices A and B:
Element i,j of C is the dot product of the ith row of A and jth column of B
Write a MATMUL code to multiple two matrices.

98 / 99

Matrix Multiplication II

Algorithm 8 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm

aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL

99 / 99

	Introduction
	Basics
	Control Constructs
	Conditionals
	Switches
	Loops

	Input and Output
	Exercise

