
C Programming II

Alexander B. Pacheco
LTS Research Computing

June 3, 2015

http://researchcomputing.lehigh.edu

Outline

1 Functions

2 Arrays

3 Pointers

4 File Input/Output

5 Preprocessor

6 Exercise

2 / 51

Functions

Functions

A function is a group of statements that together perform a task.
Every C program has at least one function, which is main()
Functions receive either a fixed or variable amount of arguments.
Functions can only return one value, or return no value (void).
In C, arguments are passed by value to functions
How to return value? - Pointers
Functions are defined using the following syntax:

return_type function_name(parameter list)
{
body of the function

}

A function declaration tells the compiler about a function’s name, return type,
and parameters.
A function definition provides the actual body of the function.

4 / 51

Function Definition

Return Type: Function’s return type is the data type of the value the function
returns. When there is no return value, return void.
Function Name: This is the actual name of the function.
Parameter: The parameter list refers to the type, order, and number of the
parameters of a function. A function may contain no parameters.
Function Body: The function body contains a collection of statements that
define the function behavior.

/* function returning the max between two numbers */
int max(int i, int j)
{
/* local variable declaration */
int result;

if (i > j)
result = i;

else
result = j;

return result;
}

5 / 51

Example of using a Function

#include <stdio.h>

/* function declaration */
int max(int i, int j);

int main() {

/* local variable definition */
int i = 100, j = 200, maxval;

/* calling a function to get max value */
maxval = max(a, b);

printf("Max value is : %d\n", maxval);
return 0;

}

/* function returning the max between two numbers */
int max(int i, int j)
{
/* local variable declaration */
int result;

if (i > j)
result = i;

else
result = j;

return result;
}

6 / 51

Scope Rules: Local & Global Variables I

A scope is a region of the program where a defined variable can have its
existence and beyond that variable can not be accessed.
Local Variables: declared inside a function or block.
can be used only by statements that are inside that function or block of code.
Local variables are not known to functions outside their own.
Global Variables: defined outside of a function, usually on top of the program.
will hold their value throughout the lifetime of your program and,
they can be accessed inside any of the functions defined for the program.
A program can have same name for local and global variables but value of local
variable inside a function will take preference.

7 / 51

Scope Rules: Local & Global Variables II

#include <stdio.h>

/* global variable declaration */
int a = 20;

int main ()
{
/* local variable declaration in main function */
int a = 10;
int b = 20;
int c = 0;

printf ("value of a in main() = %d\n", a);
c = sum(a, b);
printf ("value of c in main() = %d\n", c);

return 0;
}

/* function to add two integers */
int sum(int a, int b)
{
printf ("value of a in sum() = %d\n", a);
printf ("value of b in sum() = %d\n", b);

return a + b;
}

value of a in main() = 10
value of a in sum() = 10
value of b in sum() = 20
value of c in main() = 30

8 / 51

Initializing Local & Global Variables

Local Variables are not initialized by the system, the programmer must initialize
it.
Global variables are automatically initialized by the system depending on the
data type

Data Type Initial Default Value
int 0

char ’\0’
float 0

double 0
pointer NULL

It is a good programming practice to initialize variables properly otherwise,
your program may produce unexpected results because uninitialized variables
will take some garbage value already available at its memory location.

9 / 51

Arrays

Arrays

Arrays are special variables which can hold more than one value using the same
name with an index.
Declaring Arrays: type arrayName [arraySize];

/* simply define the arrays */
double balance[10];
float atom[1000];
int index[5];

C array starts its index from 0
[0] [1] [2] [3] [4]
10 15 14 3 7

index[2] (3rd element of the array) has a value 14
Initialize arrays with values

/* initialize the array with values*/
double atmass[4] = {12.0, 1.0, 1.0, 16.0};
double atmass[] = {12.0, 1.0, 1.0, 16.0};
atmass[0] = 12.0

Access array values via index
/* access the array values*/
int current_index = index[i];
double current_value=value[current_cell_index];

11 / 51

Array Example

#include <stdio.h>

int main ()
{
int n[10]; /* n is an array of 10 integers */
int i,j;

/* initialize elements of array n to 0 */
for (i = 0; i < 10; i++)
{
n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element’s value */
for (j = 0; j < 10; j++)
{
printf("Element[%d] = %d\n", j, n[j]);

}

return 0;
}

12 / 51

Accessing C arrays

C arrays are a sequence of elements with contiguous addresses.
There is no bounds checking in C.
Be careful when accessing your arrays
Compiler will not give you error, you will have *undefined* runtime behavior:

#include <stdio.h>

int main() {

int index[5]={5, 4, 6, 3, 1};

int a=3;

/* undefined behavior */

printf("%d\n",index[5]);

}

13 / 51

Multidimensional Arrays

General form of multidimensional array
type name[size1][size2]...[sizeN];

Declaring 2D and 3D arrays:
float array2d[4][5];
double array3d[2][3][4];

Initializing multidimensional arrays
int a[3][4] = {{/* 2D array is composed of 1D arrays*/

{0, 1, 2, 3} , /* initializers for row indexed by 0 */
{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */
};

col0 col1 col2 col3
row0 a[0][0]=0 a[0][1]=1 a[0][2]=2 a[0][3]=3
row1 a[1][0]=4 a[1][1]=5 a[1][2]=6 a[1][3]=7
row2 a[2][0]=8 a[2][1]=9 a[2][2]=10 a[2][3]=11

C arrays are row major order i.e. in memory, the C array appears as

a[0][0] a[0][1] a[0][2] a[0][3] a[1][0] a[1][1] · · · a[1][3] a[2][0] · · · a[2][3]

14 / 51

Example: Arrays

#include <stdio.h>
#include <time.h>
#include <stdlib.h>

int main () {
/* Program to calculate the sum, min and max of an integer array */
int i, sum, min, max, n=11 ;
int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

sum = max = 0.0 ; min = 10.0 ;
/* Initialize array */

/* Find sum, min and max */
for (i = 0 ; i < n ; i++) {
sum += a[i] ;
if (a[i] > max) max = a[i];
if (a[i] < min) min = a[i];

}

printf("The max value is: %d\n", max);
printf("The min value is: %d\n", min);
printf("The sum value is: %d\n", sum);
return 0;

}

15 / 51

Strings in C I

Strings in C are a special type of array: array of characters terminated by a null
character ’\0’.

/* define string */
char str[7]={’H’, ’E’, ’L’, ’L’, ’O’, ’!’, ’\0’};
char str1="HELLO!";

Memory presentation of above defined string in C/C++:
str[] [0] [1] [2] [3] [4] [5] [6]

’H’ ’E’ ’L’ ’L’ ’O’ ’!’ ’\0’
C uses built-in functions to manipulate strings:

/* C sample string functions */
strcpy(s1, s2); /* Copies string s2 into string s1.*/
strcat(s1, s2); /* Concatenates string s2 onto the end of string s1. */
strlen(s1); /* Returns the length of string s1. */
strcmp(s1, s2); /* Returns 0 if s1 and s2 are the same; less than 0 if
s1<s2; greater than 0 if s1>s2. */

16 / 51

Strings in C II

#include <stdio.h>
#include <string.h>

int main ()
{
char str1[12] = "Hello";
char str2[12] = "World";
char str3[12];
int len ;

/* copy str1 into str3 */
strcpy(str3, str1);
printf("strcpy(str3, str1) : %s\n", str3);

/* concatenates str1 and str2 */
strcat(str1, str2);
printf("strcat(str1, str2): %s\n", str1);

/* total lenghth of str1 after concatenation */
len = strlen(str1);
printf("strlen(str1) : %d\n", len);

return 0;
}

17 / 51

Pointers

Pointers

Pointers are a very important part of the C programming language.
They are used in many ways, such as:

Array operations (e.g., while parsing strings)
Dynamic memory allocation
Sending function arguments by reference
Generic access to several similar variables
Malloc data structures of all kinds, especially trees and linked lists
Efficient, by-reference "copies" of arrays and structures, especially as function parameters

Necessary to understand memory and address · · · and the C programming
language.

19 / 51

What is a Pointer

A pointer is essentially a variable whose value is the address of another variable.
Since it is a variable, it must be declared before use.
Pointer "points" to a specific part of the memory.
How to define pointers?

/* type: pointer’s base type
var-name: name of the pointer variable.
asterisk *:designate a variable as a pointer */
type *pointer_var_name;

Examples
int *i_ptr; /* pointer to an integer */
double *d_ptr; /* pointer to a double */
float *f_ptr; /* pointer to a float */
char *ch_ptr; /* pointer to a character */
int **p_ptr; /* pointer to an integer pointer */

20 / 51

Pointer Rules

There are two prefix unary operators to work with pointers.
& /*"address of" operator */

* /*"dereferencing" operator */

Use ampersand "&" in front of a variable to access it’s address, this can be stored
in a pointer variable.
Use asterisk "*" in front of a pointer you will access the value at the memory
address pointed to (dereference the pointer).
Example

int a = 8;
int *p;
/* point p to a */
p = &a;
/* dereference pointer p */

*p = 10;

Part of symbol table
var_name var_address var_value

a bff5a400 8
p bff5a3f6 bff5a400

21 / 51

Pointer to variables and dereference pointers

/* pointer_rules.c */

#include <stdio.h>

int main() {

int a = 6, b = 10;
int *p;

printf("\nInitial values:\n\tthe value of a is %d, value of b is %d\n", a, b);
printf("the address of a is : %p, address of b is : %p\n", &a, &b);
p = &a; /* point p to a */
printf("\nafter \"p = &a\":\n");
printf("\tthe value of p is %p, value at that address is %d\n", p, *p);
p = &b; /* point p to b */
printf("\nafter \"p = &b\":\n");
printf("\tthe value of p is %p, value at that address is %d\n", p, *p);
/* dereference pointer p */

*p = 6, p = &a, *p = 10 ;
printf("\nafter dereferencing the pointer:\n");
printf("\tthe value of a is %d, value of b is %d\n", a, b);
return 0;

}

22 / 51

Never dereference an uninitialized pointer!

In order to dereference the pointer, pointer must have a valid value (address).
What is the problem for the following code?

int *ptr;

*ptr = 3;

Again, you will have **undefined behavior** at runtime, you are operating on
unknown memory space.
Typically error: "Segmentation fault", possible illegal memory operation
Always initialize your variables before use!

var_name var_address var_value
ptr 0x22aac0 0xXXXX

0xXXXX 3

23 / 51

NULL Pointer

Memory address 0 has special significance, if a pointer contains the null (zero)
value, it is assumed to point to nothing, defined as NULL in C.
Set the pointer to NULL if you do not have exact address to assign to your
pointer.
A pointer that is assigned NULL is called a null pointer.

/* set the pointer to NULL 0 */
int *ptr = NULL;

Before using a pointer, ensure that it is not equal to NULL:
if (ptr != NULL) {

/* make use of pointer1 */
/* ... */
}

24 / 51

Pointers and Functions I

In C, arguments are passed by value to functions: changes of the parameters in
functions do **not** change the parameters in the calling functions.
Take a look at the below example, what are the values of a and b after we called
swap(a, b);
/* this is the main calling function */

int main() {

int a = 2;
int b = 3;

printf("Before: a = %d and b = %d\n", a, b);
swap(a, b);
printf("After: a = %d and b = %d\n", a, b);

}

/* this is function, pass by value */
void swap(int p1, int p2) {

int t;

t = p2, p2 = p1, p1 = t;
printf("Swap: a (p1) = %d and b(p2) = %d\n", p1, p2);

}

25 / 51

Pointers and Functions II

The values of a and b do not change after calling swap(a,b)
Pass by value means the called function’s parameter will be a copy of the
caller’s passed argument. The value of the caller and called functions will be
the same, but the identity (the variable) is different - caller and called function
each has its own copy of parameters

/* this is function, pass by reference */
void swap_by_reference(int *p1, int *p2) {

int t;

t = *p2, *p2 = *p1, *p1 = t;
printf("Swap: a (p1) = %d and b(p2) = %d\n", *p1, *p2);

}

/* call by-address function */
swap_by_reference(&a, &b);

The most frequent use of pointers in C is for walking efficiently along arrays.
Remember, array name is the first element address of the array (it is a
constant)

26 / 51

Pointers and Functions III

int *p=NULL; /* define an integer pointer p*/
/* array name represents the address of the 0th element of the array

*/
int a[5]={1,2,3,4,5};
/* for 1d array, below 2 statements are equivalent */
p = &a[0]; /* point p to the 1st array element (a[0])’s address */
p = a; /* point p to the 1st array element (a[0])’s address */

(p+1); / access a[1] value */

(p+i); / access a[i] value */
p = a+2; /* p is now pointing at a[2] */
p++; /* p is now at a[3] */
p--; /* p is now back at a[2] */

Recall 2D array structure: combination of 1D arrays
int a[2][2]={{1,2},{3,4}};

The 2D array contains 2 1D arrays: array a[0] and array a[1]
a[0] is the address of a[0][0], i.e:

a[0] ⇔ &a[0][0]
a[1] ⇔ &a[1][0]

Array a is then actually an address array composed of a[0], a[1], i.e. a⇔
&a[0]

27 / 51

Walk through array with pointer

#include <stdio.h>

const int MAX = 3;

int main () {

int a_i[] = {10, 20, 30};
double a_f[] = {0.5, 1.5, 2.5};
int i;
int *i_ptr;
double *f_ptr;

/* let us have array address in pointer */
i_ptr = a_i;
f_ptr = a_f;

/* use the ++ operator to move to next location */
for (i=0; i<MAX; i++,i_ptr++,f_ptr++) {
printf("adr a_i[%d] = %8p\t", i, i_ptr);
printf("adr a_f[%d] = %8p\n", i, f_ptr);
printf("val a_i[%d] = %8d\t", i, *i_ptr);
printf("val a_f[%d] = %8.2f\n", i, *f_ptr);

}
return 0;

}

28 / 51

Dynamic memory allocation using pointers

For situations that the size of an array is unknown, we must use pointers to
dynamically manage storage space.
C provides several functions for memory allocation and management.
Include <stdlib.h> header file to use these functions.
Function prototype:

/* This function allocates a block of num bytes of memory and
return

a pointer to the beginning of the block. */
void *malloc(int num);
/* This function release a block of memory block specified by
address. */
void free(void *address);

29 / 51

Example of 1D dynamic array

/* dynamic_1d_array.c */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

int n;
int* i_array; /* define the integer pointer */
int j;

/* find out how many integers are required */
printf("Input the number of elements in the array:\n");
scanf("%d",&n);

/* allocate memory space for the array */
i_array = (int*)malloc(n*sizeof(int));

/* output the array */
for (j=0;j<n;j++) {

i_array[j]=j; /* use the pointer to walk along the array */
printf("%d ",i_array[j]);

}

printf("\n");
free((void*)i_array); /* free memory after use*/
return 0;

}

30 / 51

File Input/Output

Opening & Closing Files

Opening Files: use the fopen() function to create a new file or to open an
existing file, this call will initialize an object of the type FILE

FILE *fopen(const char * filename, const char * mode);

filename is string literal, which you will use to name your file and access mode can have one
of the following values:

Mode Description
r Read Only, file pointer is at beginning of file
w Write Only, file pointer is at beginning of file
a Append, if file exists, file pointer is at end of file
r+ Read & Write
w+ first truncate the file to zero length if it exists otherwise create the file if it does not exist.
a+ creates file if it does not exist. The reading will start from the beginning but writing can only be appended.

Closing Files: use the fclose() function.
int fclose(FILE *fp);

The fclose() function returns zero on success, or EOF if there is an error in closing the file.
This function actually, flushes any data still pending in the buffer to the file, closes the file, and
releases any memory used for the file.
The EOF is a constant defined in the header file stdio.h.

32 / 51

Writing Files

simplest function to write individual characters to a stream:
int fputc(int c, FILE *fp);

function fputc() writes the character value of the argument ’c’ to the output
stream referenced by fp.
returns the written character written on success otherwise EOF if there is an
error.
to write a null-terminated string to a stream:

int fputs(const char *s, FILE *fp);

function fputs() writes the string ’s’ to the output stream referenced by fp.
returns a non-negative value on success, otherwise EOF is returned in case of
any error.
You can use int fprintf(FILE *fp,const char *format, ...) function as well to
write a string into a file.

33 / 51

Reading Files

simplest function to read a single character from a file:
int fgetc(FILE * fp);

getc()| unction reads a character from the input file referenced by fp.
return value is the character read, or in case of any error it returns EOF.
functions to read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);

function fgets() reads up to n− 1 characters from the input stream referenced
by fp.
It copies the read string into the buffer buf, appending a null character to
terminate the string.

34 / 51

Example: Writing & Reading a File

#include <stdio.h>

main()
{

FILE *fp;

fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for fprintf...\n

");
fputs("This is testing for fputs...\n", fp);
fclose(fp);

}

#include <stdio.h>

main()
{
FILE *fp;
char buff[255];

fp = fopen("/tmp/test.txt", "r");
fscanf(fp, "%s", buff);
printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);
printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);
printf("3: %s\n", buff);
fclose(fp);

}

35 / 51

Preprocessor

C Preprocessor I

The C Preprocessor is not part of the compiler, but is a separate step in the
compilation process.
In simplistic terms, a C Preprocessor is just a text substitution tool and they
instruct compiler to do required pre-processing before actual compilation.
All preprocessor commands begin with a pound symbol (#).
It must be the first nonblank character, and for readability, a preprocessor
directive should begin in first column.

Directive Description
#define Substitutes a preprocessor macro
#include Inserts a particular header from another file
#undef Undefines a preprocessor macro
#ifdef Returns true if this macro is defined
#ifndef Returns true if this macro is not defined

#if Tests if a compile time condition is true
#else The alternative for #if
#elif #else an #if in one statement

#endif Ends preprocessor conditional
#error Prints error message on stderr

#pragma Issues special commands to the compiler, using a standardized method

37 / 51

C Preprocessor II

replace instances of MAX_ARRAY_LENGTH with 20
#define MAX_ARRAY_LENGTH 20

get stdio.h from System Libraries and add the text to the current source file.
#include <stdio.h>

get myheader.h from the local directory and add the content to the current source
file.
#include "myheader.h"

undefine existing FILE_SIZE and define it as 42.
#undef FILE_SIZE

#define FILE_SIZE 42

define MESSAGE only if MESSAGE isn’t already defined.
#ifndef MESSAGE
#define MESSAGE "You wish!"
#endif

38 / 51

C Preprocessor III

process the statements enclosed if DEBUG is defined.
#ifdef DEBUG
/* Your debugging statements here */
#endif

This is useful if you pass the -DDEBUG flag to gcc compiler at the time of
compilation.

39 / 51

Exercise

Calculate Area and Circumference

Write a code to read a radius from standard input and calculate area and
circumference of a circle of that radious

Algorithm 1 Pseudo code for calculating area and circumference
program AREACIRCUM

Define π
r ← some number
a = πr2

c = 2πr
end program AREACIRCUM

41 / 51

Roots of Quadratic Equation

Solve the quadratic equation ax2 + bx+ c = 0

x =
−b±

√
(b2 − 4ac)

2a

Algorithm 2 Pseudo Code for Solving Quadratic Equation
program ROOTS

read a, b, c from standard input
d← b2 + 4ac
x← (−b+

√
d)/2a and x← (−b−

√
d)/2a

end program ROOTS

42 / 51

Fibonacci Numbers

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

Fn = Fn−1 + Fn−2,

with seed values
F0 = 0;F1 = 1.

Calculate the first n Fibonacci Numbers.

Algorithm 3 Pseudo Code to calculate sequence of Fibinacci Numbers
program FIBONACCI

n← a number > 5
f0← 0, f1← 1
do i← 2 · · ·n

fn← f0 + f1, f0← f1, fn← f1
end do

end program FIBONACCI

43 / 51

Factorial

Calculate factorial and double factorial of a number

Algorithm 4 Pseudo Code for Factorial
program FACTORIAL

n← a number
do i← n, n− 1, n− 2 · · · 1

f = f ∗ i
end do

end program FACTORIAL

44 / 51

Calculate GCD & LCM I

In mathematics, the greatest common divisor (gcd) of two or more integers,
when at least one of them is not zero, is the largest positive integer that divides
the numbers without a remainder.
Using Euclid’s algorithm

gcd(a, 0) = a

gcd(a, b) = gcd(b, a%b)

In arithmetic and number theory, the least common multiple of two integers a
and b is the smallest positive integer that is divisible by both a and b.

lcm(a, b) =
| a · b |
gcd(a, b)

45 / 51

Calculate GCD & LCM II

Algorithm 5 Pseudo Code to calculate gcd
program GCDLCM

a, b← two integers
do while b 6= 0

t← v, v ← u%v, u← t
end do
gcd← |u|
lcm← |a · b|/gcd

end program GCDLCM

46 / 51

Calculate pi by Numerical Integration I

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of a
number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A “hands-on”
introduction to OpenMP,
SC09

47 / 51

Calculate pi by Numerical Integration II

Algorithm 6 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program

48 / 51

SAXPY

SAXPY is a common operation in computations with vector processors included
as part of the BLAS routines
y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 7 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY

49 / 51

Matrix Multiplication I

Most Computational code involve matrix operations such as matrix
multiplication.
Consider a matrix C which is a product of two matrices A and B:
Element i,j of C is the dot product of the ith row of A and jth column of B
Write a MATMUL code to multiple two matrices.

50 / 51

Matrix Multiplication II

Algorithm 8 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm

aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL

51 / 51

	Functions
	Arrays
	Pointers
	File Input/Output
	Preprocessor
	Exercise

